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Abstract—Identifying Foraminifera (or forams for short) is
essential for oceanographic and geoscience research as well as
petroleum exploration. Currently, this is mostly accomplished
using trained human pickers, routinely taking weeks or even
months to accomplish the task. In this paper, a foram identifica-
tion pipeline is proposed to automatic identify forams based on
computer vision and machine learning techniques. A microscope
based image capturing system is used to collect a labelled
image data set. Various popular image classification algorithms
are adapted to this specific task and evaluated under various
conditions. Finally, the potential of a weighted cross-entropy loss
function in adjusting the trade-off between precision and recall is
tested. The classification algorithms provide competitive results
when compared to human experts labeling of the data set.

I. INTRODUCTION

Foraminifera (or forams, for short), a kind of ubiquitous
ocean dwelling organisms, are widely used in oceanographic
and geoscience research. They are the most widely used fossil
organisms for biostratigraphy, age-dating and correlation of
sediments, and paleoenvironmental interpretation [1]. While
only a few hundred microns in size, foraminifera have become
invaluable tools for various academic and industrial purposes.
For example, the relative abundance of different species in-
dicates unique paleoenvironmental conditions, while chemical
measurements of their calcium carbonate shells are important
information to interpret paleoclimatological parameters such
as temperature, salinity, ocean chemistry, and global ice vol-
ume [2]. On the other hand, for the oil industry, analyzing
forams is one of the most important ways to find potential
hydrocarbon deposits [3] and forams are routinely used as an
indicator of the ages and paleoenvironments of sedimentary
strata in oil wells during petroleum exploration [4]. Classi-
fying and collecting forams according to their species are
necessary processes for most studies. Unfortunately, for most
laboratories, identification of different species have to be
done manually by employed personnel. Generally speaking,
a typical study require searching through many thousands
of similar sized forams, taking weeks or even months to
accomplish.

Recently, the computer vision community has experienced
a rapid development thanks to deep convolutional neural
networks and the availability of large scale images data sets

[5], [6]. Besides deep learning based methods, other standard
frameworks such as bag-of-features [7], [8] and dictionary
learning [9] methods have also gained significant popularity
for image classification in the past years. There exist few stud-
ies related to computer-aided forams identification [10], [11],
[12]. However, these studies mainly focused on either semi-
automatic approaches or simply leaving the classification task
to experts. Although these methods significantly accelerate the
identification of forams, we claim that by taking advantages
of the development of image classification algorithms in the
past decade, accurate full-automatic classification becomes
possible.

In this paper, we propose a pipeline to automatically identify
foraminifera samples based on computer vision and pattern
recognition techniques. First, images of foraminifera samples
through a microscope under different controlled lighting con-
ditions are captured. Second, images taken under different
illumination conditions are fused and corresponding visual
features are extracted. Finally, the probabilities of which
classes the foram samples possibly belong to are predicted.

Considering the huge number of different species of forams
(50 planktonic and 10,000 benthic extant), in this study we
aim to provide a “proof of concept” by focusing on several
taxa of widely used planktonic foraminifera that are most
important for geochemical proxy measurements and certain
census counts. Accordingly, the following six species are
chosen because of their widespread use within the paleo-
ceanography community [13], [14], [15] : Globigerinoides
ruber (G.ruber), Globigerinoides sacculifer (G.sacculilfer),
Globigerinoides bulloides (G.bulloides), Neogloboquadrina
pachyderma (N.pachyderma) and Neogloboquadrina incompta
(N.incompta) and Neogloboquadrina dutertrei (N.dutertrei).
Figure 1 includes some examples of the 6 species targeted
in this study.

The main contributions of the paper are summarized below:
1) A pipeline is proposed to automatically classify different

classes of forams includes lighting-controlled image
capturing, information fusion, feature extraction and
classification;

2) An image data set of 6 species of forams is collected,
which can be used for not only computer vision but also
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Fig. 1. Species of forams targeted in this paper (a) G. ruber, (b) G. bulloides,
(c) N. pachyderma, (d) N. incompta, (e) N. dutertrei, (f) G. sacculilfer, (g)
Other species.

oceanographic and geoscience purposes;
3) Different state-of-the-art image classification algorithms

are modified and adapted to the forams classification
task and their performances are compared in detail;

4) A weighted cross-entropy loss function is proposed to
adjust the trade-off between precision and recall accord-
ing to different applications;

5) The effects of different data sizes and classes distribu-
tions on different methods are analyzed in detail.

The rest of the paper is organized as follows: In section
II, we show the entire process of data collection; section III,
most relevant existing works are briefly discussed; section IV,
the processes of adapting different state-of-the-art algorithms
to our problem is described; finally, the performances of
different algorithms under different conditions are compared
and discussed in Section V.

II. FORAMS IMAGES DATA SET

To develop a system which can identify forams using a
common microscope and camera, we propose the following

pipeline for data collection. The data acquisition system uses
an AmScope SE305R-PZ microscope with a 30X zoom) and
an AmScope MD500 camera, which is a 5MP USB camera
attached to the microscope. Assuming that each sample is
found at the center of the field of view, the height of the
microscope is adjusted manually to get the samples on focus,
providing an approximate resolution of 450 × 450 pixels per
sample (the region of one foram in the image). To capture
more information, a ring with 16 LED light is used, which is
controlled by an Arduino UNO Microcontroller communicat-
ing with MATLAB via Bluetooth. Thus, for each sample, 16
images are captured with 16 different lighting directions.

The current data set has 1437 forams, including 178 G.
bulloides, 182 G. ruber, 150 G. sacculifer, 151 N. dutertrei,
174 N. incompta, 152 N. pachyderma and 450 samples of
“Others”. The dataset is publicly available online [16]. We
collected a larger number of samples of other species to better
capture the larger variability of this group and mimic the
real identification tasks. All these samples were identified and
separated manually by experts.

Due to the variations within species and similarity between
different species, identifying forams is not an easy task; rather
it is one requiring special training and background knowledge.
Moreover, in reality, experts can rotate the samples to identify
the species while the visual system only has a fixed view
of the samples from the microscope. Figure 1 shows some
examples of images in our data set. Thus, to better evaluate
the performance of classification algorithms, we also collected
2 experts’ labelling of 540 randomly chosen samples in our
data set.

III. RELATED WORK

Recently, deep Convolutional Neural Networks (CNNs) has
triggered a revolutionary change in the image classification
community, especially for very large scale data sets. Although
CNNs normally require a large amount of training data, vari-
ous pre-trained models have been published and the different
levels of features learned with the original data sets have
promising potential to be transferred to new data sets [17],
[18], [19]. Among these models, Vgg16 [20], Inception V3
[21] and ResNet50 [22] are most representative and show
competitive performance on various computer vision tasks.
VggNet, proposed in 2014, emphasizes the importance of
deeper network for hierarchical representation of features. Al-
though VggNet has good performance and a simple architec-
ture, its computational cost is also high. Compared to VggNet,
Inception V3, on the other hand, is deeper and has better
performances but lower computational complexity. Finally,
ResNet, the winner of ILSVRC 2015, is even deeper than
Inception V3 and has similar performance as the Inception V3
network on ILSVRC data set. In ResNet, residual connections
are claimed to be inherently necessary for training “very
deep” network [22] and has been shown to accelerate the
training process greatly [23]. To guide the training process
into the right direction, a feasible loss function is required to
evaluate the current model appropriately. Among various loss



functions, cross-entropy is the most popular loss function for
classification tasks with softmax layer. The general formula of
cross-entropy loss function is

H(p, q) = −
∑
x

w(x) p(x) log(q(x)) (1)

where p, q are respectively the “true” and predicted probability
distributions, w(x) is the corresponding weight for sample
x with w = 1 for all x if it is an uniformly weighted
cross-entropy loss function. From the equation we can see
that the cross-entropy loss function measures the difference
between the “true” and predicted probability distributions, the
minimization of which trains the model to approach the “true”
distributions [24].

Although deep learning attracts most of the attention in the
past few years, traditional classification algorithms, usually
involving various manual feature extraction processes, are still
showing promising performance on specific or relatively small
data sets. Within this group, bag-of-features (BoF) [7] is one of
the most popular frameworks, in which an image is represented
by a large amount of local features extracted from different
points with various scales. PHOW [25], as an extension of
BoF, is a dense SIFT descriptor extracted at multiple scales and
its implementation is commonly available in various toolboxes
such as VLFeat [26]. By dividing the images into pyramids,
the PHOW features are good at capturing not only the texture
but also spatial features [27]. Recently, a Dirichlet-derived
GMM Fisher (DGMMF) kernel was proposed [8] for BoF
framework to achieve a compact and dense representation
with better discriminative power. Within this branch of image
classification algorithms, the pipeline with PHOW and DG-
MMF kernel is one of the most competitive algorithms on not
only standard benchmarks but also our data set. However, for
forams in particular, their outer contours contain important
shape information which usually get lost when extracting
PHOW features. Shape representation is a popular problem
in the computer vision community. Particularly, a shape rep-
resentation called Bag of Contour Fragments is proposed in
[28], in which the shape is decomposed into contour fragments
and each of them is individually described using a shape
descriptor.

IV. METHODOLOGY

Two groups of methods are studied in this paper: (1) The
BoF pipeline with manually extracted features; (2) Pre-trained
CNNs based algorithms. Specifically, Vgg16, ResNet50 and
Inception V3 are chosen.

A. Image Fusion

The models chosen in this paper were not originally de-
signed for our task; the BoF method is designed to classify
color or grey images while the CNNs were pre-trained with
color images. In our case, the color of different species is
the same but only the textures and structures are different.
Further, pictures using a single lighting condition are usually
insufficient to expose the structure of the sample. For example,

due to the small size and similar appearance of samples, the
edges between chambers will be blurred if the lighting is
straight or too bright while the textures can not be seen under
shadows or if the light is too dim. To capture more texture and
structure information robustly, 16 grey images under different
lighting conditions were captured. We found that training a
new convolutional layer at the beginning of the pre-trained
CNN models would result in serious overfitting problems due
to our limited data. Thus, as a compromise, we chose to first
fuse the 16 grey images into a 3-dimensional image, used
directly as the input for the pre-trained CNNs. Also, for the
BoF method, we tested and compared the output of using
grayscale and the fused images. The results turned out to be
very similar. Thus, to better compare the BoF method with the
CNN methods, we chose to use the fused images directly as
the input for all the methods involved in this paper.

To fuse the 16 grey images into a 3-dimensional image, we
have implemented and tested Principal Components Analysis
(PCA) in a similar manner to computing Eigenfaces [29].
However, during the process, important texture information
is lost, leading to low classification accuracy. As a result, we
chose to take the element-wise max, min, and mean values for
the 16 images (matrices) and construct a new image with these
three values as the 3 dimensions; however, by taking the max
and min values of the pixels, the approach became susceptible
to image-specific noise (e.g. specularities), present in only a
few of the 16 images. To resolve this, we chose to replace the
max, min and mean with 90%, 50% and 10% percentiles. This
allowed the algorithm to capture enough variance in the data
while reducing its susceptibility to the aforementioned sources
of noise. The examples of fused images are shown in Figure
2.

B. Bag-of-Features Framework

As discussed in Section III, the BoF pipeline uses the fused
images generated above to extract PHOW features and form a
codebook which is then fed into the DGMMF kernel. Finally
a linear SVM classifier is used for classification. The code of
this pipeline is provided in [8]. We refer to this method as
“PHOW” in our analysis.

To extract the shape information of the outer contours
of forams, we first calculate the boundary of the sample’s
silhouette by image binarization of the average of the 16

Fig. 2. Fused images of targeted forams (a) G.ruber, (b) G.bulloides, (c)
N.pachyderma, (d) N.incompta, (e) N.dutertrei, (f) G.sacculilfer without (f1)
and with (f2) sac-like final chamber, (g) Other species.



Fig. 3. Pipeline of transfer learning from pre-trained CNNs.

images and then use the Bag of Contour Fragments (BCF)
method proposed in [28], with code available online. The
descriptor used to represent the contour fragments is the shape
context descriptor proposed in [30]. This method represents
contour also in a Bag-of-Words (BoW) framework using a
spatial pyramid matching (SPM) technique [31]. Finally, local-
constrained linear coding (LLC) [32] is used to transform the
representation into a space that is suitable to be classified with
a linear SVM. We merge the features from “PHOW” (encoded
by DGMMF) and the features from “BCF” (encoded by LLC),
and then use a linear SVM for classification. We refer to this
method as “PHOW+Contour” in our analysis.

C. Transfer Learning for Convolutional Neural Networks

Due to the limited size of the data set, we did not train
the deep neural networks from scratch; instead, we performed
transfer learning with CNNs pre-trained with ILSVRC, a large
scale image classification data set [33]. In our pipeline, we use
the output of the feature maps from the pre-trained models.
Afterwards, we attach three new fully connected layers with
dropout regularization in between for classification on the new
data set. The entire pipeline is shown in Figure 3. If we count
from the left to right. The first layer is a global average pooling
layer. The first two fully connected (FC) layers both have
512 nodes and Relu as the activation function while the last
FC layer has 7 (the same number as the classes including
“Others”) nodes with softmax activation function. The first
and the second dropout rates are 0.05 and 0.15, respectively.

Additionally, although the models are pre-trained with the
same data set (ILSVRC), different networks learn to classify
based on different information, leading to features complemen-
tary to each other. Thus, by concatenating the output features
of Vgg16 and ResNet50, the combined model achieves better
performance.

In actual forams identification tasks, the requirements for
precision and recall for each species vary according to different
applications. For example, for chemical measuring of certain
species, we would like to use samples that contain less
unexpected species, which is to say, high precision of the target
species is more favorable than high recall but lower precision.

This trade-off can be achieved by choosing an appropriate
weighting loss function. Thus, we propose a cross-entropy
based weighted loss function to enable the application oriented
trade-off potential. The loss for one sample can be expressed
as

L(Y, Ŷ ) = f(Y, Ŷ )
∑
i

H(yi, ŷi)

= −f(Y, Ŷ )
∑
i

yilog(ŷi)
(2)

where yi, ŷi are respectively the “true” and predicted proba-
bility of class i. Y = {yi} is the “true” distribution of target
sample. In classification tasks, yi generally is set equal to 1
if the sample belongs to class i, otherwise 0. Ŷ = {ŷi} is the
output vector of the last softmax layer of the model which has
the same length as the classes need to classify (in our case, it
equals to 7). The function f(Y, Ŷ ) is defined as

f(Y, Ŷ ) = Wl(Y ),k(Ŷ ) (3)

where [Wl,k] is a matrix of weights, l(Y ) = argmaxl′ yl′

and k(Ŷ ) = argmaxk′ ŷk′ . The entry Wl,k represents the
weight associated with classifying the target sample (with true
class l) as class k in the loss function. In our case, we will
want to maintain high precision for the 6 species mentioned
previously. Thus, we set W7,k > Wl,k for all l < 7 where
class 7 is the class of “Others”. That is, we put more weight
on misclassifying samples in the “Others” class which would
lead to a drop on precision for the species that we are aiming
to identify. For simplicity, we set W7,k = w and Wl,k = 1 for
all k and l < 7. To test how much the weights can influence
the performance, we change the value of w between 10−4 and
104 for our analysis.

V. DATA ANALYSIS

Our experiments are conducted to explore the following:
• How various algorithms perform under different amount

of training data;
• How the proportion of “Other” in the training set influ-

ences performance;



• How the weighted cross-entropy loss function influences
the identification results.

To evaluate different algorithms and the experts’ labeling,
we adopt three metrics: precision, recall and F1 score. In
actual forams identification tasks, the correct identification
of targeted species is relevant; therefore, we calculate the
precision, recall and F1 score of the 6 target species and
report the average weighted according to their proportions in
the testing or human labeling data set.

A. Human Experts Results

As mentioned in Section II, we evaluate the performance of
the classification algorithms by comparing the results to the
annotations made by two experts for 540 randomly chosen
samples from our dataset. Expert A has more than 5 years
of experience in forams identification while expert B has 6
months of experience. The experts had eight choices when
labeling. The first seven choices correspond to the classes
considered for this study, and the final option was “Not
Identifiable.” The last label was used if the expert believed
that the sample cannot be identified with the provided images.

We compute the weighted average precision, recall and F1
score of the 6 target species under two different scenarios:
First, we regard the samples with label “Not Identifiable” as
ones that the experts fail to correctly recognize, which will be
counted as false negatives. We refer to this scenario as “With
NI.” For the second scenario, we discard the “Not Identifiable”
samples from our computation of precision and recall. We refer
to this scenario as “Without NI.” The results of the two experts
under these two scenarios are shown in Table I.

Finally, as we will see in this section, the classification
algorithms show competitive performance both in precision
and recall to human experts. The results show that human ex-
perts perform better in precision but worse in recall, indicating
that human experts are good at preventing mixing erroneous
samples as the target species but will miss samples from the
target species as a result.

B. Performances Comparison

During the training process, classes are weighted inversely
proportional to class frequencies in the training data. This is
done to mitigate the effect of classes that have fewer samples
than others, and is achieved by adjusting the corresponding

TABLE I
PERFORMANCE OF HUMAN EXPERTS

Scenarios Expert A Expert B Average

Precision With NI 80.44 81.14 80.79

Without NI 84.39 80.62 82.51

Recall With NI 58.98 53.61 56.25

Without NI 87.60 67.01 77.31

F1 Score With NI 66.71 59.92 63.31

Without NI 85.84 69.33 77.59

Fig. 4. F1 scores of different algorithms with different sizes of training data.

parameters of the model fitting function provided by Keras
[34] and the parameters of the classifiers provided by scikit-
learn [35]. This weighting procedure is an extra step besides
weighted cross entropy loss function defined in equation (2)
and remains the same for all the experiments.

To appropriately split the training and testing data sets, we
adopt a stratified K-Folds cross validation approach, in which
the proportions of different classes are preserved in the training
and testing set. The data set will be randomly divided into K
groups, with one group for testing and the rest for training.
The process will be repeated until all the groups have been
used for testing once. To evaluate the effect of different sizes
of training and testing data. A series of numbers of splitting
groups are tested: 8, 6, 5, 4, 3, 2. Furthermore, to test even
smaller training data sets, we also split the data into 3, 5
groups and use 1 group for training while the rest for testing.
Similarly, the process will be repeated until all the groups have
been used for training once. Finally, to get smoother and more
valid results, the whole process is repeated 10 times and the
mean and standard deviation of the results are reported. For
simplicity, we only perform 4 repetitions for the BoF methods,
while all the other testing procedure is the same.

1) Comparison of Methods: In this paper, 6 representative
algorithms are tested and compared. As shown in Figure 4,
the ensemble model of ResNet50 and Vgg16 shows the best
performance, followed by ResNet50. The BoF method with
PHOW and contour shape features performs worse than Vgg16
but better than the method with PHOW features alone. Finally,
Inception V3 has the worst performance compared to the
other five methods. Because the relative ranking and trend are
similar for different proportions of “Others” during training,
only the results using 100% of the “Others” samples is
reported. Later we will show results of different methodologies
as the proportion of “Others” is changed for training.

For the CNNs, although our forams data set is small and



Fig. 5. F1 scores as a function of the proportion of training data for the different classifiers used in the CNN pipeline.

Fig. 6. F1 scores as a function of the proportion of training data. Each curve correspond to a different proportion of “Others” samples (i.e., 30%, 50%, 75%
or 100%). A proportion of 100% means that we used all the samples of “Others” available for training.

different from the natural image data set (ILSVRC), the pre-
trained models still show promising potential in extracting
informative features. We note that their performance in our
data set is different from the ranking in the ILSVRC data set.
Furthermore, we conjecture that the extracted features from
each method are complementary since merging the feature
from ResNet50 and Vgg16 leads to better performance.

2) CNN Pipeline Comparison: After extracting features
with the pre-trained CNNs, we make use of different classifiers
with these features. These classifiers are : Random Forest (RF)
where 250 trees are used; SVM where a Radial Basis Function
(RBF) kernel is used; kNN where points are weighted by
the inverse of their distance; and a Neural Network (NN).
The classes are weighted according to their proportions in
the testing data as discussed previously and all the other
parameters are set to the default values in scikit-learn [35].
The NN classifier has the same architecture and parameters as
discussed in Section IV.

As shown in Figure 5, NN in average shows the best
performance followed by SVM. The gap between NN and
SVM is very small but larger for Vgg16. For all the different
CNNs, Random Forest (RF) always ranks the third while kNN
has the worst performance. The gap between RF and kNN, and
RF and SVM are the largest. The results indicate that neural
network suits the forams classification task better than the
other three classifiers when features extracted by pre-trained

CNNs are used. We only report the results of “ResNet50”,
“Vgg16” and “ResNet50 + Vgg16” with 100% of the “Others”
samples used for training. The trends for the other proportions
are similar.

In the following sections, we will analyze the performance
of the CNNs with the Neural Network classifier at the end.

3) Effect of the Proportion of Training Data: As shown in
Figure 4, with the increase of the training data size the overall
performance increases as well. BoF related methods seem to
be more sensitive to very small training data sets than pre-
trained CNN based methods. The reason might be that in the
BoF framework, the codebook (for mid-level features) needs
to be established by clustering the low-level features extracted
from the training data, while the entire features extracting
process of pre-trained CNNs does not depend on the training
data. Although all the methods favor larger training data size,
the BoF framework in particular depends heavier on the data
sizes. Additionally, even when only 1

5 of the data is used for
training, the accuracy of CNNs methods is still acceptable,
with the gap of scores within 10% between each other.

4) Effect of the Proportion of “Others”: The class labelled
as “Others” is a mixture of different species excluding the
6 target species. The number of this class is around 3 times
the number of each target class in our data set. To study the
influence of the proportion of “Other” in the training data,
we tested the models by training respectively with 30%, 50%,



Fig. 7. Precision and Recall curves as a function of the proportion of data used for training. These plots correspond to the results without a weighted loss
function, and with a weighted (w = 4) loss function. The first row of the data shows the results when only 30% of the “Others” data points are used for
training, and the second row shows the results for 100%.

75% and 100% of all the “Others” samples originally chosen
for training via the Stratified K-Folds (SKF) cross validation
algorithms. The proportion of “Others” remains at 100% for
testing (i.e., this proportion is not changed for testing). For all
other sections in this paper, the proportion of “Others” remain
the same for both training and testing data.

As shown in Figure 6, larger proportions of “Others” in
the training data set tend to generate better performance. The
performance is very similar for proportions above 50%. These
observations indicate that, at least for the forams identification
application, the algorithms are not very sensitive to the class
distribution (here, it mainly means the proportion of “Others”)
of the training data. The trends are similar for all methods.
Figure 6 shows the results of “ResNet50”, “Vgg16” and
“ResNet50 + Vgg16.”

C. Weighted Cross-Entropy

In Figure 7, the performance between the neural networks
without a weighted loss function and with a weighted loss
function with w = 4 (as defined in equation 2) are compared.
The weighted average precision of the 6 target species is
higher if a weighted cross-entropy loss function is used.
As a trade-off, the recall decreases by a similar amount,
resulting in a similar F1 score. The results demonstrate that the
weighted cross-entropy loss function can be used to adjust the
trade-off between precision and recall. The trends are similar
for different proportions of training data, CNN models, and
proportions of “Others”.

To further test how much trade-off the weighted loss func-
tion can achieve, we varied w between 10−4 and 104. Here,
“ResNet50+Vgg16” is tested with a five-folds cross validation
scheme and 100% of “Others” data points are used. The results
are shown in Figure 8. As expected for larger values of weight
w, the precision improves but the value seems to saturate
around 86%. As w decreases, the recall improves while still
saturating around 90%.

Fig. 8. Precision, Recall and F1 curves as a function of the weight w on the
loss function. Results correspond to the “ResNet50+Vgg16” model.



VI. CONCLUSION

We proposed a pipeline for an automatic foraminifera identi-
fication system based on image classification techniques. Sev-
eral of the most representative and state-of-the-art algorithms
are modified to suit our problem and evaluated under different
training data sizes and distributions of classes. Finally, a
weighted cross-entropy loss function was proposed and its
potential in adjusting the trade-off between precision and recall
was discussed.

The results indicate that current image classification tech-
niques have promising performances on this task, which is
comparable to the performance of human experts. Moreover,
the performance is still acceptable when a small amount of
data is available for training. However, the current computer
vision based identification system still has its own limitations.
The biggest limitation is that human experts can rotate the
samples and observe the whole sample to get nearly perfect
identification results, but for our current system, only pictures
of one fixed view are available.
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