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Abstract—In this paper, a new methodology for robust seg-
mentation of obstacles from stereo disparity maps in an on-
road environment is presented. We first construct a probability
of the occupancy map using the UV-disparity methodology.
Traditionally, a simple threshold has been applied to segment
obstacles from the occupancy map based on the connectivity of
the resulting regions; however, this outcome is sensitive to the
choice of parameter value. In our proposed method, instead of
simple thresholding, we perform a topological persistence analysis
on the constructed occupancy map. The topological framework
hierarchically encodes all possible segmentation results as a
function of the threshold, thus we can identify the regions that
are most persistent. This leads to a more robust segmentation.
The approach is analyzed using real stereo image pairs from
standard datasets.

I. INTRODUCTION

In recent years, there has been significant development
in the sector of intelligent driver assistance systems and
autonomous vehicles in order to enhance safety by monitoring
the on-road environment. One of the foremost issues that
needs to be addressed for these Advance Driver Assistance
Systems (ADAS) is the interpretation of surroundings of the
ego vehicle, i.e. dynamic scene analysis and on-road obstacle
detection. Recently, vision-based approaches for traffic-scene
analysis have become an increasingly popular research area.
In this paper, we focus on the problem of segmentation of
obstacles in a disparity map obtained from a stereo-vision
system. Real-time computation of dense disparity maps [1]
has made stereo-vision an alternative to higher cost LIDAR
systems. A driving scene analysis system typically extracts
the road surface, segments the obstacles from the road, and
computes the position of the obstacles relative to the ego
vehicle.

The current state-of-the-art for solving this problem relies
on parameter values that are carefully selected in order to pro-
vide good performance. Often these parameters rely on thresh-
old values for segmentation of images. However, sensitivity of
the detection results to these parameters can be a big concern.
Small changes in threshold values can lead to large variations
in the segmentation of the images. In this paper, we introduce
a novel methodology for characterizing the sensitivity of a
segmentation result based on persistent topology, and introduce
an approach for robust obstacle detection.

*This work was supported by the National Science Foundation under award
CNS-1239323.

Fig. 1 provides an overview of our methodology. This
work builds on recent advances in ground segmentation and
obstacle detection for safe autonomous driving. In particular,
we employ an efficient UV-disparity approach to classify a
3D traffic scene into a ground plane and obstacles. Then, an
occupancy grid is constructed to enable segmentation of the
obstacles. Finally, we apply a topological persistence technique
on the occupancy map to perform robust obstacle detection.
The analysis of this method shows how this approach improves
robustness of the detection results.

A fundamental difference between our approach and other
existing approaches is its hierarchical nature. Topological
persistence based segmentation does not rely on a single
threshold value; instead, it keeps track of all the clustering

Fig. 1. Our Methodology. (a) Grayscale image, (b) Disparity depth map, (c)
Robust segmentation results, and (d) Flowchart of the proposed methodology.



results, corresponding to different thresholds. This is essen-
tially providing a hierarchical clustering. A key advantage of
our approach over traditional techniques is that the algorithm
can be tuned for better performance through a few intuitive
parameters leading to results that are less sensitive than simple
thresholding. The proposed method also provides us with a
persistence diagram that gives a compact visual representation
of segmentation result corresponding to different threshold
values. By analyzing this diagram, we can choose meaningful
merging parameters for our segments and can also get a sense
of the stability of the number of clusters under different choices
of persistence parameters.

The remainder of this paper is organized as follows. Section
II gives an overview of the current state-of-the-art. A brief
background on topological persistence is presented in section
III. Section IV presents our obstacle segmentation approach
based on UV-disparity computations. A detailed description of
our methodology using persistence for obstacle segmentation is
introduced in section V. Results and robustness analysis of our
proposed method are discussed in section VI. Finally, section
VII summarizes the paper and discusses future work.

II. RELATED WORK

This section provides a brief overview of the state-of-the-
art of different segmentation methods, specifically in the field
of ADAS. We focus on the current state-of-art of stereo vision
based approaches, which make use of disparity depth maps for
scene understanding.

In [2], Chen et al. segment the stereo disparity map by
employing a depth slicing technique and then, accurately mark
the object boundaries using a region growing method to im-
prove on-road obstacle segmentation. Another region growing
technique for vehicle detection is suggested by Kormann et al.
[3]. In the first step, vehicles, modeled as cuboids, are detected
using mean shift clustering of planar segments. Then, a UV-
disparity map is computed to generate hypotheses for vehicle
appearance and disappearance.

Recently, Wang et al. have presented a method for robust
obstacle detection and free space calculation based on efficient
disparity map computation and G-disparity [4]. The obstacles
are detected using UV-disparity maps and splines are used
for the road model. In [5], Lefebvre et al. perform vehicle
detection by applying mean shift segmentation directly on
the 3D point cloud estimated from the dense disparity maps
computed from a stereo pair.

Erbs et al., in [6], compute dynamic stixels from stereo
disparity map and use the Dynamic Stixel World representation
for efficient and compact one-dimensional modeling of real
world 3D road scenes. Optimal segmentation is performed by
means of dynamic programming. In [7], this group presents
another method for traffic scene understanding and driver
assistance system by incorporating a Bayesian segmentation
approach. Stixel representation of images adds robustness to
their algorithms and thus, their method works pretty well even
in adverse weather conditions.

Dense disparity map based on-road obstacle detection is
presented as a constrained optimization problem in [8]. The
depth image, here, is segmented based on surface orientation

criterion. In [9], two new obstacle detection algorithms based
on disparity map segmentation for applications in intelligent
vehicle systems are presented. The first algorithm assumes that
the obstacles are located almost parallel to the image plane and
directly segments them using a robust model fitting method
applied to the quantised disparity space. The second method
employs some morphological operations, followed by a robust
model fitting technique to separate the ground regions.

Lee et al., in [10], perform vehicle detection using a road
feature and disparity histogram. Road features are extracted
from v-disparity maps and localized obstacles are divided into
multiple obstacles using a disparity histogram and remerged
using four criteria parameters - the obstacle size, distance,
angle between the divided obstacles, and the difference of
disparity values. In [11], they present another stereo-vision
based obstacle detection approach using UV-disparity map and
bird’s-eye view mapping.

Recently, map-based segmentation and navigation tech-
niques for autonomous vehicles are also gaining popularity.
In [12], Martinez et al. propose a mapping algorithm based
on probabilistic and heuristic methods to classify and predict
the areas around an autonomous robot. Another path planning
method for mobile robots is presented in [13]. This paper em-
ploys an enhanced dynamic Delaunay Triangulation approach
and a GPS tail technique for robot navigation. In [14], Posada
et al. present a robust method of floor-obstacle segmentation
for mobile robot navigation. The method relies on fusing
opinions of multiple heterogeneous classifiers generated from
different segmentation schemes like graph cut and region
growing to improve the overall classification rate.

Some other papers on traffic scene analysis and obstacle
detection have incorporated techniques like watershed seg-
mentation [15], connected component analysis [16], plane-
fitting and edge based segmentations [17]. Literature has also
addressed several surveys on intelligent transportation systems
[18], [19].

In this paper, we have aimed for robust road and obstacle
segmentation problem using a persistence based analysis.
The next section gives a detailed description of topological
persistence.

III. BACKGROUND

Topological Data Analysis [20] is a new field of study
which employs tools from persistent homology theory [21].

Fig. 2. Persistence Analysis. (a) Original grayscale image, (b) images
after thresholding, and (c) persistence diagram. Each point in the diagram
corresponds to clusters that are born and die at specific threshold values. Points
near the diagonal are sensitive to small variations of the original image.



Fig. 3. Disparity Maps. (a) Grayscale image, (b) disparity map, (c) u-disparity and (d) v-disparity results. In the v-disparity map, the red line indicates the
upper plane for road segmentation.

This analysis is commonly used for the extraction of topo-
logical attributes from functions or point cloud data. These
features are captured in a compact visual representation called
the persistence diagram [22]. Persistent homology has been
used for segmentation [23] of natural images and clustering
[24]. In this work, we make use of this framework to study
the robustness of obstacle detection. This section provides a
brief overview of some of the concepts of persistent homology
in the context of image analysis. A comprehensive review of
the topic can be found in [22].

Let us consider a function f : R2 → [0, 1]. Given a
threshold value τ ∈ [0, 1], we compute the upper level set
Sτ = f−1[1− τ, 1]. As we will see later, f will represent the
probability of obstacle occupancy at a location in front of the
vehicle and Sτ represents the set of detections if we choose a
threshold value of τ . Our goal is to analyze these detections
and characterize their sensitivity to τ .

The topological structures of the set Sτ ⊂ R2 can be
summarized using the Betti numbers, which are the ranks of
topological invariants called homology groups. The n-th Betti
number, βn, measures the number of n-dimensional cycles in
the space (e.g., for a 2D space, β0 is equal to the number of
connected components and β1 is equal to the number of holes
in the space). The set {Sτ}τ∈[0,1] is referred to as a filtration
and satisfies the following property:

Sτ1 ⊆ Sτ2 whenever τ1 ≤ τ2. (1)

Persistent homology computes the values of τ for which
topological features appear (bkn) and disappear (dkn) during a
filtration, referred to as the birth and death values of the k-th
feature in dimension n (e.g., connected components if n = 0
and holes in the space if n = 1). We will focus on connected
components in order to characterize obstacle detections in this
scenario. This information is encoded into a multiset of points
(bkn, d

k
n), called a persistence diagram. Each point is referred

to as a persistence interval with corresponding length equal to
dkn− bkn. Algorithms for the efficient computation of persistent
homology can be found in [20], [25].

An example of a function f , sample sets Sτ , and per-
sistence diagram (for n = 0) is shown in Fig. 2. There is
a single cluster in the diagram for which its death time is
much greater than its birth time (i.e., the point is furthest
away from the diagonal). There is also one cluster near the

diagonal which only exists for a short persistence interval. The
thresholded images illustrate that the small cluster is formed
around τ = 0.25 and merges with a larger cluster soon after.

IV. UV-DISPARITY BASED OBSTACLE SEGMENTATION

This section presents a road and obstacle segmentation
approach based on prior work in the literature [31], which
makes use of the UV-disparity map methodology.

A. UV-Disparity Map

We assume that a disparity map has been computed from
a stereo pair of images from the vehicle. In our experiments,
we make use of the Semi Global Block Matching (SGBM)
technique [27]. This map can also be represented as a 3D
point cloud where each point has coordinates (u, v, d), where
(u, v) represent the x-y coordinates in the image domain
and d represents the disparity value. By projecting all the
points to the ud-plane and the vd-plane and accumulating the
overlapping points, we generate two new 2D images, called the
u-disparity and the v-disparity [28] maps, respectively. Fig. 3
illustrates these maps for a stereo pair from the KITTI dataset
[29].

B. Road Segmentation

We make use of the v-disparity map to segment the road
from the obstacles. Under the assumption that the road can
be approximated by a nearly-horizontal plane, then every row
of the disparity map, that intercepts the road, will have its
minimal value at the associated road pixels. That is, the
points in the v-disparity map will be lower bounded by the
points associated with the road. This lower bound can be
approximated by a line in the v-disparity map as shown in
Fig. 3.

In order to obtain a robust estimate for the ground plane,
a line is fitted to the v-disparity map using robust regression
techniques [30]. This line is referred to as gground(d). We
then use an appropriate threshold (based on height) to segment
the road and obstacle pixels in the original image domain. In
particular, the point (u, v, d) is labeled as an obstacle point if
v is greater than

glower(d) = gground(d) +

(
αuhg
αvb

)
d, (2)



Fig. 4. Occupancy Results. (a) Grayscale image, (b) probability of occupancy
map, (c) region of probability map for vehicle using original approach,
(d) region of probability map for vehicle using modified approach, and (e)
segmentation result using simple thresholding. Some corresponding regions
are highlighted in (a) and (b). Plot (d) shows a better probability of detection
using the modified approach.

where hg is the height above the estimated ground plane used
to identify road pixels, αu and αv represent the intrinsic focal
length parameters of the camera in pixels, and b is the distance
of the baseline for the stereo camera system. Fig. 3(d) shows
glower as a red line in the v-disparity space.

C. Occupancy Grid Computation

A probabilistic occupancy map in the u-disparity domain
[31] is computed in order to enable the segmentation of
objects. This map is obtained by using only those points in
the disparity map that are above the ground plane and below
a plane of height hmax, which specifies a maximum detection
height for our approach.

Given a site s with coordinates (su, sd) in the u-disparity
domain, we define two binary random variables Vs and Cs
which represent the visibility of this site (Vs = 1 means that
the site is visible) and the obstacle confidence (Cs = 1 means
that an obstacle is seen at s). We can express the probability
of occupancy, Os, at site s, as

P (Os) =
∑
v,c

P (Vs = v, Cs = c) · P (Os|Vs = v, Cs = c),

(3)
where we define

P (Os|Vs = 0, Cs = c) = 0.5 ∀c ∈ {0, 1}
P (Os|Vs = 1, Cs = 1) = 1− PFP
P (Os|Vs = 1, Cs = 0) = PFN

(4)

with PFP and PFN representing the false positive and false
negative probabilities of occupancy detection respectively. We

assume independence between Vs and Cs, which leads to the
need for expressions for P (Vs = v) and P (Cs = c).

In order to compute these probabilities, we let NP (s) be
the total number of measured points in image domain at site
s, NO(s) is the total number of obstacle points, and NV (S) is
the total number of visible points. These three quantities can
be obtained from

AP (s) = {(u, v)|u = su, v ∈ [glower(sd), gupper(sd)]}
AO(s) = {(u, v)|ID(u, v) = sd} ∩AP (s)
AV (s) = {(u, v)|ID(u, v) ≤ sd} ∩AP (s)

(5)
which leads to Na(s) = |Aa(s)|, where a ∈ {P,O, V }, ID
is the disparity map, (u, v) is a coordinate in the disparity
image domain, glower and gupper represent the v-coordinates
of the pixels on the ground and the maximum height plane, as
functions of the disparity values (i.e., these are the equations
defining the lower and upper planes for obstacle detections).

The probability of visibility for the site s in u-disparity
space is then defined as

P (Vs = 1) =
NV (s)

NP (s)
, (6)

and the probability of confidence of observation as

P (Cs = 1) = 1− e−λ
NO(s)

NV (s) , (7)

where λ is a constant parameter. Fig. 4 shows the probability of
occupancy results and highlights some corresponding regions
in between the grayscale image and the occupancy map.

A scenario in which this approach does not seem to work
that well is when surfaces of the obstacles observed are not
vertical (e.g., the windshield of a vehicle). In this case, points
of the same object are dispersed over various sites on the u-
disparity map, leading to low probability of occupancy over a
region in this space.

To resolve this problem, all the invisible points in the
disparity space below a point that has already been identified
as an obstacle are considered as obstacles. In other words,
given

AIO(s) = {(u, v)|ID(u, v) > sd,∃v′, (u, v′) ∈ AO(s)} (8)

we redefine

AnewO (s) = AO(s) ∪ (AIO(s) ∩AP (s)) (9)

and use this quantity to update the value of NO(s). Fig. 4
shows the improvement on the probability of occupancy over
the original method.

D. Obstacle Segmentation by Threshold Value

The traditional approach for obstacle segmentation in the
u-disparity domain is to apply a constant threshold to the oc-
cupancy grid and form a new binary obstacle map. Connected
components from this binary map are regarded as separate
obstacles. Fig. 4 shows a sample segmentation result.

Each obstacle detected in the u-disparity domain needs
to be mapped back to the original image plane for display.
This is done by taking a site s in the u-disparity space and
identifying all points in the image domain with u-coordinate
su and disparity sd with the object label assigned to s.



Fig. 5. Birth and death of connected components during filtration. First row on the left shows a part of the original image and the corresponding probability
of occupancy map. Second row shows a connected component in cyan which corresponds to a car in the image space for five different values of τ , and third
row shows the corresponding regions in image space. On the right, the persistence diagram corresponding to the shown occupancy map. Each point indicates
the lifespan of a connected component. The red line is the threshold line γper = 0.2. All the regions above this line have persistence interval greater than 0.2.

V. EXTRACTING PERSISTENT REGIONS

Let us begin by defining

f(s) = P (Os) (10)

as the probability of occupancy function over the u-disparity
space in order to draw a connection with the concepts intro-
duced in Section III.

Segmentation of f via simple thresholding is fast and easy
to implement. However, the proper threshold value may not
be easily selected due to variations on the probability map
attributed to the quality of the disparity map. The latter is
affected by external and internal factors such as illumination
and the texture of objects. Thus, the ideal threshold may
change between images, even in the same video sequence. This
simple type of segmentation is very sensitive to the choice of
threshold value. As we will see in the experimental section,
small variations in the threshold value can lead to a large num-
ber of regions introduced and removed. Furthermore, obstacles
are associated with peaks in probability of the occupancy map
f , for which there may not be a single threshold value that
includes all these peaks without merging obstacle regions that
are not supposed to be merged. In order to address all of these
issues, we make use of topological persistence to generate a
more robust segmentation.

Fig. 5 (left) illustrates the birth and death process of
connected components during the filtration of upper level sets
of f . At τ = 0.2, the cyan region is born. Another region in
red is also born at τ = 0.24 but dies at τ = 0.25, because it
merges with the cyan region which has an earlier birth time.
The persistence interval of the red region is 0.01. At τ = 0.49,
the cyan region is still alive and its area increases. At τ = 0.64,
this region dies leading to a persistence interval of length 0.44.
Note that by choosing regions with a persistence interval length
greater than γper = 0.2, the cyan region would be selected,
while the red region would be removed.

The birth and death of all regions obtained from f are
captured in the persistence diagram, as displayed in Fig. 5
(right). Each point in the persistence diagram represents the
lifespan of a region. Note that this diagram contains hierar-
chical information about the merging of these regions as a
function of τ . In order to obtain a robust segmentation of the

obstacles, we keep only those regions with persistence interval
greater than γper = 0.2. This bound is illustrated by a red
line in Fig. 5 (right). Finally, in order to obtain a labeling of
the clusters in the u-disparity map, we need to determine the
support of the selected persistent regions. However, since a
region can exist over a range of values of τ , its size can vary.
In this case, we select the largest set of points for each region
which is associated with the value of τ before the region dies.
The only problem with this assignment is that the support of
the regions may be overlapping, in which case a point in the u-
disparity space is assigned to the region with the lowest death
time.

Fig. 6 illustrates the clustering result for γper = 0.2. We
apply the same approach introduced in Sec. IV-D to illustrate
the segmentation result in the image space.

VI. RESULTS

The entire process is implemented in MATLAB on a 3.4
GHz computer with 16GB RAM. It takes approximately 9.5
seconds for a 1242 × 375 image for τ ∈ [0, 1]. We make
use of stereo image pairs from the KITTI Vision Benchmark
Suite [29], [32], [33] for analysis. For Occupancy grid com-
putation, PFP = 0.01, PFN = 0.05, and λ = 10. The
persistence analysis is performed by varying τ ∈ [0.1, 0.9]
and letting γper = 0.2 unless otherwise specified. For both
the thresholding method and the proposed persistence analysis
method, a simple morphological post-processing step is applied

Fig. 6. Segmentation results. (a) Clusters in u-disparity space, and (b) their
corresponding regions in image space.



Fig. 7. Comparison between thresholding and persistence methods. (a) Results of persistence approach for γper = 0.15, 0.2 and 0.25. (b) Results of thresholding
approach for τ = 0.45, 0.5 and 0.55.

to the segmented images in order to remove the small detection
regions as well the small gaps in the detection regions.

In this section, we compare the persistence method with
the traditional thresholding method and analyze the effect of
the persistence bound for our persistence method.

A. Comparing Thresholding and Persistence Method

Although thresholding is a simple solution for segmenta-
tion of the obstacles in the probability of occupancy map, it
is highly sensitive to the choice of parameter value. On the
other hand, the persistence based method performs an analysis
for a range of threshold values and keeps track of all the
resulting segmentations in a hierarchical fashion. We exploit
this property to obtain a more robust outcome.

Fig. 7 provides sample results for both the thresholding
and persistence methods. For thresholding, τ is set to 0.45,
0.5 and 0.55. For persistence, γper is set to 0.15, 0.2 and
0.25. We picked these ranges in order to make the results for
both methods comparable for the middle parameter value. It is

Fig. 8. Changes in detection regions for thresholding approach. (a) Number
of regions added and (b) Number of regions removed as a function of τ . (c)
Total number of regions added or removed. (d) Total number of regions as a
function of τ . The bin size for (a)-(c) is 0.05.

observed that even over this small range, thresholding causes
significant variation in its output. In particular, there are several
detection regions that appear and disappear on the right side
of the image. On the contrary, the results for persistence are
very consistent over a similar range of parameters.

We quantify the robustness of our method by analyzing
how new regions are introduced and removed as parameters
change for both methods. Fig. 8(a) and (b) illustrate how
regions get added and removed by using the thresholding ap-
proach. These plots are histograms of the birth and death values
of all the regions computed from the persistence analysis.
Fig. 8(c) represents the total change on the number of regions
as a function of threshold parameter τ . When τ changes from
0.45 to 0.5, around 30 regions are added or removed from the
result, some of which are removed through post-processing.
When it changes from 0.5 to 0.55, around 20 regions are added
or removed. Fig. 8(d) shows the total number of regions as a
function of τ . We note that the sensitivity of the segmentation
results cannot be observed from this plot, since regions are
both added and removed making the net change on the number
of regions small, but producing very different segmentation
results.

Fig. 9 shows a similar analysis for persistence. In the case
of persistence, increasing γper only gets rid of regions by
merging them. The histogram of number of regions merged as
a function of γper is shown in Fig. 9(a). In this case, changing
γper from 0.15 to 0.2 or from 0.2 to 0.25 leads to less than

Fig. 9. Changes in detection regions for persistence approach. (a) Number
of regions removed and (b) total number of regions as a function of γper .
The bin size for (a) is 0.05.



10 regions removed or added. The total number of regions as
a function of γper is shown in Fig. 9(b) which can be directly
correlated with the histogram of regions removed. Both of
these plots can be directly extracted from the persistence
diagram.

B. Effect of Persistence Bound

The persistence bound γper is used to select the most
prominent regions in the hierarchical clustering of the data.
This selection process can be visualized in the persistence
diagram as selected features above a particular line (see Fig. 5

Fig. 10. Segmentation results for persistence bound γper ranging from 0.05
to 0.3. Bushes and trees are separated when γper = 0.05 and 0.1. They are
merged when γper increases from 0.1 to 0.2. When γper = 0.25 and 0.3, the
results are essentially unchanged. Note that two vehicles are always detected
properly for all persistence thresholds.

Fig. 11. Segmentation results. Results are performed by varying τ ∈
[0.1, 0.9] and letting γper = 0.2 in this case. Cars, trees and bushes can
be detected and segmented on each frame, and in the first frame we also
detected the person on the left side.

for an example). As the value of γper increases, the line moves
up, allowing fewer but larger regions to be selected. This is due
to the merging of some of these regions. During this process,
obstacles which are close to each other in the image space will
get merged first.

Fig. 10 illustrates the changes in the segmentation results as
γper increases. When γper = 0.05, we can see that trees and
bushes on both sides are divided into several small regions.
When it increases to 0.25, trees on the left are merged into
one region. The results are essentially unchanged between
γper = 0.25 and 0.3. The two vehicles are always detected
and segmented properly between 0.05 and 0.3.

Fig. 11 shows several segmentation results using our
methodology. It is observed that our approach is able to
correctly segment ground from obstacles. Furthermore, obsta-
cle detection and segmentation results are qualitatively good.
Cars that are not too far from the ego vehicle are detected
consistently as single regions. On the top image, the method
is also able to detect an individual driving a bike. Also, most
trees and bushes are detected and segmented properly on both
sides of the road. While the bushes on the left side of the road
are always detected, sometimes they will be split or merged



into a single region.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a robust road extraction and ob-
stacle segmentation methodology from stereo disparity maps.
We compute UV-disparity maps and an occupancy grid for
easy obstacle segmentation and analyze the sensitivity of the
segmentation results by using tools from persistent topology.
This framework provides us with a persistence diagram that
helps us explore all thresholding results in a hierarchical fash-
ion and achieve a robust segmentation. The method has been
tested on several stereo test images available from standard
stereo databases and the results look promising.

In the future, we will continue our work to make the
segmentation more robust and extend our approach to object
recognition, classification and tracking. In particular, the entire
persistent diagram can be used to track objects over time
without throwing away potentially correct segmentation results
and without relying on a single threshold value. Additionally,
the choice of the persistence bound, γper, is also essential for
compact visualization of the data.
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