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Abstract

Image segmentation is one of the most important low-
level operation in image processing and computer vision. It
is unlikely for a single algorithm with a fixed set of param-
eters to segment various images successfully due to varia-
tions between images. However, it can be observed that the
desired segmentation boundaries are often detected more
consistently than other boundaries in the output of state-
of-the-art segmentation results. In this paper, we propose
a new approach to capture the consensus of information
from a set of segmentations generated by varying param-
eters of different algorithms. The probability of a segmen-
tation curve being present is estimated based on our proba-
bilistic image segmentation model. A connectivity probabil-
ity map is constructed and persistent segments are extracted
by applying topological persistence to the probability map.
Finally, a robust segmentation is obtained with the detec-
tion of certain segmentation curves guaranteed. The ex-
periments demonstrate our algorithm is able to consistently
capture the curves present within the segmentation set.

1. Introduction

Image segmentation is one of the most important low-
level operation in image processing and computer vision.
The existing techniques cluster the image pixels into a set
of groups visually distinct and uniform with respect to some
properties, such as gray level, texture or color [11]. There
are a variety of algorithms that have been proposed for im-
age segmentation. Grouped by their methodology, segmen-
tation algorithms can be mainly divided into these classes:
edge-based segmentations [2, 13] make use of edge infor-
mation to segment regions in an image; superpixel-based
segmentations [20, 17, 23] use superpixels as initialization
of segmentation to make use of superpixel cues and reduce
computational complexity; and graph-based segmentations
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[25, 21, 9] represent the image as a weighted undirected
graph for which the segmentation problem is treated as a
graph partitioning problem.

State-of-the-art segmentation algorithms are able to suc-
cessfully capture different features from images. However,
it is difficult for a single algorithm with the same parame-
ters to segment all the images successfully due to variations
between images. One feature that may be observed is that
when comparing the segmentation results from different al-
gorithms with different parameters, the desired boundaries
are detected more consistently than other boundaries. One
example is shown in Fig. 1 (b). The four segmentations are
generated by four different algorithms. The boundary of the
swan is detected in all the results with a small perturbation
from each other. Thus, extracting consistent detections of a
set of segmentations can give a better estimation of correct
segmentation.

In this paper, we propose a new approach to capture the
consensus segmentation information from a set of segmen-
tations generated by varying parameters of different seg-
mentation algorithms. First, the probability of a segmen-
tation curve present around a location x is estimated based
on our image segmentation model and a connectivity prob-
ability map is constructed. Then, persistent segments are
extracted by applying topological persistence to the proba-
bility map. Finally, a robust segmentation is obtained with
the guarantee of detection of certain segmentation curves.
Our approach is illustrated in Fig. 1.

The rest of the paper is organized as follows: Section 2
gives an overview of the related work; Section 3 introduces
our image segmentation model; A detailed description of
the proposed segmentation approach is introduced in Sec-
tion 4; Section 5 discusses the choice of thresholds; Exper-
iments of our method are discussed in Section 6; Finally,
section 7 summarizes the paper and discusses future scope.

2. Related Work
In this section we briefly overview the image segmenta-

tion approaches based on consensus algorithms.
In [18], the segmentation set is generated by many runs



Figure 1. Pipeline of the proposed approach. (a) Original image. (b) Four samples from the segmentation set. The segmentation set
generated by varying parameters of four algorithms are used as an input set. (c) A connectivity probability map is constructed. (d) A
set of labeled images, which corresponds to the filtration set for the topological persistence analysis, is generated by thresholding the
connectivity probability map. (e) Persistence diagram of the filtration shown in (d) where each point in the diagram corresponds to a
connected component in the filtration. (f) Segmentation result obtained by applying two thresholds in the persistence diagram.

of a randomized segmentation algorithm. The closed con-
tours are then obtained by combining those segmentation
through consensus region merging. In [19], a consensus
segmentation algorithm applied on remotely sensed images
is introduced, using a stochastic optimization algorithm
based on the Filtered Stochastic BOEM (Best One Element
Move) method. Also, it gives a way to estimate the op-
timum number of the clusters in segmentation. An unsu-
pervised approach of consensus segmentation based on the
graph cuts using the consensus inferred from hierarchical
segmentation ensembles for partitioning images into fore-
ground and background regions is presented in [12] . In
[10], the segmentation set is used for computing a super-
pixel image, which is used to generate consensus cluster-
ing. In [22], the authors propose a bi-clustering framework
and perspective for reaching consensus in grouping prob-
lems, which can be used in consensus image segmentation.
In [16], a cluster ensemble is used to determine the number
of clusters in a group of data, which can be used to estimate
the number of regions in the segmentation.

3. Image Segmentation Model
Let Ω ⊂ R2 be the image domain. We represent a seg-

mentation S of an image as a set X of nodes xi ∈ Ω,
and a set Γ of continuous curves γij : [0, 1] → Ω for
which γij(0) = xi and γij(1) = xj . Each curve is non-
intersecting with any curve in the set and the number of

curves incident with any point is greater than one, making
this a valid segmentation. The segmentation S has a graph-
ical structure corresponding to a planar graph G = (V,E)
where V = {1, · · · , NX}, NX is the number of nodes in
X , and E = {(i, j) | γij ∈ Γ}. We define a segmentation S
by the pair (G,Γ).

In order to define a probabilistic model for segmenta-
tions, the unknown generative model is represented as:

P [S = (G,Γ)] = P [Γ | G] · P [G]. (1)

It is assumed that the graphical structure G is obtained from
an over-segmentation of the image with corresponding set
of vertices Vo and edges Eo. First, a subset of edges E ⊂

Figure 2. Illustration of the model used for segmentations: The
representation model for a segmentation S (left) and the bounded
perturbation model around Sσ .



Eo is selected and the vertices V ⊂ Vo corresponding to the
subgraph induced by E are chosen. We let

pij := P [(i, j) ∈ E] , (2)

which is a piece of information from this unknown distri-
bution of graphical models that will be used in our study.
The probabilities pij specify the probability of a curve seg-
ment to be present. We further assume that given a graph-
ical structure, the set of curves Γ is generated using some
process that does not violate the graphical structure (i.e., it
does not introduce intercepts between the curves).

Let us define Gσ as the graph obtained by selecting the
set of edges Eσ = {(i, j) ∈ Eo | pij > σ} and correspond-
ing nodes Vσ . We assume that there exist constants δ and an
associated set Γσ of curves γσij that satisfy

|γij − γσij |∞ ≤ δ for all (i, j) ∈ Eσ ∩ E (3)

for any segmentation with graphical structure G = (V,E),
where |f1 − f2|∞ = sups∈[0,1] ||f1(s) − f2(s)||2. This
assumption requires the set of realizations of a given curve
γij to be concentrated within a band of radius δ around the
curve γσ,δij . We define Sσ = (Gσ,Γσ).

Our objective is to come up with a procedure and a
set of conditions under which the segmentation Sσ can
be estimated. In particular, we introduce a procedure un-
der which we can construct a subset C ⊂ Ω such that
im(Sσ) ⊂ C, where im(Sσ) =

⋃
(i,j)∈Eσ im(γσij) and

im(γσij) =
{
x = γσij(s) ∈ Ω | s ∈ [0, 1]

}
.

Let Dδ : Ω → [0, 1] be the function that measures the
probability of having a segmentation overlapping with a ball
Bδ(x) of radius δ centered at a point x. That is,

Dδ(x) := P [im(S) ∩Bδ(x) 6= ∅] . (4)

Theorem 1. The set C = {x |Dδ(x) ≥ σ} satisfies:

im(Sσ) ⊂ C (5)

and
im(Sσ)c 	B2δ ⊂ Cc, (6)

where Cc is the complement of set C in Ω, B2δ is the ball
of radius 2δ and 	 operator is the morphological erosion
operator.

Proof. For the first inequality it is sufficient to show that
every point in Sσ has Dδ(x) ≥ σ. Let x ∈ im(Sσ). Then,
we have that given (i, j) ∈ E thenBδ(x) will intersect with
im(γij) due to Eqn 3. Noting that (i, j) ∈ E with probabil-
ity greater that σ (by definition of Sσ) then Dδ(x) ≥ σ.

For the second inequality, we note that any point x that is
more than 2δ from im(Sσ) has Dδ(x) = 0 since no curves
will intersect with the ball Bδ(x).

4. Approach

In this section, we describe our approach in detail. We
use the connectivity of an n×n patch to construct a discon-
nection probability map D∗n(x). Then we discuss how the
size n of the patch affects the quality of the model approxi-
mation. The size of the patch is a parameter associated with
the perturbation bound δ in our model.

4.1. Boundary characterization

Given a set of segmentations {Sk, k = 1, . . . ,K} gener-
ated by different segmentation algorithms with different pa-
rameters, we assume that the segment curves appearing in
the set satisfy the probabilistic model we define in Section 3.
That is, each segment curve in the segmentation results cor-
responds to an edge (i, j) ∈ Eo of the over-segmentation.

In a segmentation Sk, an n × n patch N(x) centered at
x is called connected if all the pixels in the patch have the
same label. Then the number of times it is disconnected
over the set {Sk}, Cdisn , counts how many times one or
more segment curves appear within that patch. As shown
in Fig. 3, a large patch may capture more than one edge
in Eo, while too small of a patch may miss some parts of
the segment curves in Eo. Based on our model, we have
D∗n(x) = Cdisn /K as an estimate for Dδ(x). We assume
that segment curves of the desired segmentation boundary
are more consistent than undesired ones in set {Sk} with a
small perturbation around the correct boundary. Therefore,
high values of Dδ(x) indicate the high confidence of a seg-
ment curve corresponding to (i, j) ∈ Eo along the patch in
the groundtruth.

When applying a threshold σ, then a labeled image
L(n, σ) is obtained by computing the connected compo-
nents of the set Lnσ = {x |D∗n(x) ≤ σ}. Changing σ from
σmin = 0 to σmax ≤ 1 produces a set of labeled image
{L(n, σ)}σ∈[0,σmax]. The connected components appear-
ing at high σ values indicate high probability of segment
curves between them. One example of the labeled image
set is shown in Fig. 6 (i)-(l).

4.2. Choice of Parameter n

As mentioned in Section 4.1, the quality of approxima-
tion of the segmentation model depends on the parameter
n. As shown in Fig. 6 (i)-(l), the connected components get
larger and merged as σ increases. Two connected compo-
nents will merge under a certain σ if there is a path of over-
lapped patches connecting them. If γij for (i, j) ∈ Eo is
present between the two connected components with prob-
ability pij , then pij can be approximated by the minimum
valued of σ that merges the two connected components.

In order to analyze the effect on the choice of the param-
eter n, consider an image with two segments separated by
a soft vertical edge. Assume γij for (i, j) ∈ Eo is present



Figure 3. Example of segment curves captured by patches. (a)
An image with a soft edge and a sharp edge. (b)-(d) show three
possible segmentation results. Red lines are the detected segment
curves. (b) The large brown patch covers two segment curves. The
present probability of neither edge can be measured correctly by
the patch of that size. The smaller blue patch is a suitable choice.
(c)-(d) The small green patch cannot cover all the segment curves
of the soft edge, which makes it have lower disconnection prob-
ability than the actual value, whereas the blue patch is a suitable
choice since it covers all the possible positions of the curves.

within a range of 2δ pixels with probability pij (i.e., a dis-
tance of δ from its centerline). Finding the minimum value
of σ that captures the separation between opposite sides of
the regions separated by γij requires a value of n that is
big enough for this purpose. For the case n − 2 ≥ 2δ,
the range of variations of the segments can be covered by
a single n × n patch as shown in Fig. 4 (a). The pixel
x in the middle of the range has the disconnection proba-
bility D∗n(x) = pij . The minimum probability threshold
that makes the two segments connected is σ = pij . For
the case n − 2 < 2δ, a single n × n patch cannot cover
the entire range, which makes the disconnection probabil-
ity D∗n(x) < pij . Note that the cross-sectional range can
be covered by m = [ 2δ+1

n−1 ] patches overlapping with one
pixel, where [a] is the minimum integer greater or equal to
a. Fig. 4 (b) shows one example of this case. Let pkd be
the disconnected probability of k-th patch. The disconnec-
tion probabilities satisfy

∑m
k=1 p

k
d = pij , where the sum

is over the patches. There exists at least one pixel x along
the cross-sectional line for the range of variation of γij with
D∗n(x) ≥ pij/m. The probability threshold that ensures
that the two segments are disconnected is σ < pij/m. Thus,
if n is chosen large enough, say n−2 ≥ 2δ, then (i, j) ∈ Eo
with γij appearing within range 2δ in the set {Sk} with
probability pij will be represented in all the labeled images
with σ < pij . For (i, j) ∈ Eo with range 2δ > n − 2, they

Figure 4. Illustration of the effect of the choice of n. Vertical dash
lines with the same color indicate the variation regions of one seg-
ment curve γ. (a) The case of n − 2 ≥ 2δ. The variation region
can be covered by one patch. (b) The case of n−2 < 2δ. The vari-
ation region can be covered by four patches in this example. (c)
The case of closed segment curves influence the approximation.

will be represented in the label image with σ < σ′, where
pij/m ≤ σ′ < pij and m = [ 2δ+1

n−1 ].
Let us consider another case corresponding to two seg-

ment curves γij and γi′j′ where (i, j) and (i′, j′) ∈ Eo are
close to each other. An example is shown in Fig. 4 (c). The
red dash lines represent the range for γij and the green is for
γi′ j′ . Assume that, when γi′ j′ is not present, D∗n(x) = σ0
where x is the center of right patch in the figure and σ0 is
the minimum σ making the two segments separated by red
curve merge. After adding γi′ j′ , the probability of having a
disconnected set increases, since γi′ j′ is present in the area
covered by the right patch. That is,D∗n(x) > σ0. Therefore,
γi′ j′ near γij may make the minimum connection threshold
for γij greater than its actual value. For an n×n patch, seg-
ment curves which have perturbation regions with ranges
that are at least n − 1 pixels away from each other can be
identified without the influence of other segment curves.

5. Thresholding
In the set of labeled images {L(n, σ)}σ∈[0,σmax], the

connected components get larger and merged with other
connected components as σ increases. To estimate the seg-
mentation Sσ , we extract the connected components by ap-
plying a threshold σ on D∗n(x) as well as selecting only
those regions that have a topological persistence greater
than τ . This last step ensures that regions that are possi-
bly generated by errors in the estimation of Dδ(x) are not
considered.

5.1. Disconnection Threshold σ

The threshold σ is used to get the segment curve γij with
probability pij ≥ σ. As discussed in Section 4.2, the qual-
ity of the approximation of the segmentation model is based
on the size n of patch. In order to capture all the segment
curves that are present with probability greater than pij ,
given that we only care about the curves appearing within
a range 2δ ≤ n − 2, we can set the threshold σ = pij .
If we consider the curves that appear within a larger range



2δ > n − 2, the threshold should be σ = pij/m, where
m = [ 2δ+1

n−1 ].

5.2. Persistence Threshold τ

If a single value of σ is used for thresholding, the
segment curves are estimated by only one labeled image
L(n, σ) and we throw out the information of other labeled
images in the set. Also, the ideal value of pij and δ to get
a reasonable segmentation may be different due to the vari-
ations of the image quality over the dataset. Images with
blurred edges require large δ and low pij while images with
sharp edges require small δ and have high pij . Furthermore,
the connected components we want to extract correspond to
the peaks of the connectivity probability map 1−D∗n, sim-
ply thresholdingD∗n may not capture all the desired regions.
To address this, we apply topological persistence to gener-
ate more robust segmentation estimation. This technique
has been used in some previous works [24, 3] to get the
robust obstacle segmentation from stereo pairs. In this sec-
tion, we briefly introduce the concept of topological persis-
tence and discuss how it applies to our image segmentation
process. A comprehensive review of topological persistence
can be found in [7].

5.2.1 Background

Consider a function f : R2 → [0, 1] defined over a 2D
domain. Given a threshold value σ ∈ [0, 1], the upper level
set of f is defined as Eσ = f−1[1 − σ, 1]. The set Eσ =
f−1[1− σ, 1] is a filtration and satisfies:

Eσ1
⊆ Eσ2

whenever σ1 ≤ σ2. (7)

Persistent homology [6] focuses on connected components
during the filtration of upper level sets of f .

The topological features for our application are the con-
nected components in set Eσ , and each is summarized by
the appearance and disappearance (i.e. merging with other
connected components) of a connected component during a
filtration; this is referred to as the birth (bk) and death (dk)
times of the k-th feature, respectively. Each feature can be
encoded by a point (bk, dk) and the diagram with all fea-
tures represented as a set of point is called persistence dia-
gram. The persistence interval of k-th feature is measured
by dk − bk.

Fig. 5 shows an example of such function f . At σ =
0.15, there exists two connected components. A small con-
nected component is born at σ = 0.25. When σ = 0.35,
the one born at σ = 0.25 dies because it merges with an-
other connected component which has an earlier birth time,
leading to a persistence interval of length 0.1. At σ = 0.6,
all connected components merge to the biggest one. All
the connected components die at this time except the one
having the earliest birth time. A persistence diagram which

Figure 5. Persistence analysis. (a) Original image. (b) Image after
thresholding. (c) Persistence Diagram.

encodes the birth and death time of each region can be used
to select the persistent region. The diagram corresponding
to this example is shown in Fig. 5 (c). The further away a
feature is from the diagonal the higher is its persistence and
robustness to perturbations.

5.2.2 Extract Persistence Connected Components

In order to extract the persistent connected components for
our segmentation process, we first define a connection prob-
ability map f(x) = 1−D∗n(x). Then, the labeled image set
{L(n, σ)}σ∈[0,σmax] form a filtration of the upper level set
of f . Fig. 6 (g) shows the persistence diagram extracted
from the filtration shown in Fig. 6 (i)-(l). Only the regions
with persistence intervals greater than τ are kept to avoid
the connected components generated by noise in the seg-
mentation set {Sk}. This threshold is illustrated by a blue
dash line parallel to the diagonal in Fig. 6 (g). The size of
each region above the persistence threshold can vary, since
it exists over a range of τ . To get the largest size of the
persistence region, the largest set of points which is asso-
ciated with its death time is selected as the segmentation
result [24].

One advantage of the persistence diagram is its stabil-
ity property [4]. Small changes in the function f lead to
small changes in the persistence diagram. This translates
into the following for our scenario: we can obtain segmen-
tation result that is robust to parameter value changes and
small variations in the segmentation set {Sk}.

To make sure the segment curves γij present with prob-
ability greater than pij within a range 2δ ≤ n − 2 can be
captured, we can set σmax = pij . This ensures that regions
with death after pij will never merge with other regions in
filtration {L(n, σ)}σ∈[0,pij ]. This threshold is shown as the
horizontal blue dash line in Fig. 6 (g). This is equivalent
to removing the labeled images with σ > pij from the fil-
tration. For this new diagram, the connected components
separated by those segment curves will never get merged in
the filtration and will be present in the final segmentation
result. Note that this is not the same as simply thresholding
f(x) = 1 −D∗n(x) by σ = pij , which will remove the re-
gions with death before σ as well as those that are born after
σ.



6. Experiment

The proposed approach is implemented in MATLAB.
We use images from the Berkeley Segmentation Database
[15, 1] to test our algorithm. There are five groundtruth seg-
mentations per image labeled by different human subjects.

We adapt the segmentation coverage score defined in [1]
to evaluate the segmentation result. The overlap score be-
tween regions R and R′ is defined as

O(R,R′) =
|R ∩R′|
|R ∪R′|

, (8)

where |R| is the area of R. The covering of a segmentation
groundtruth Sr by a segmentation S ′ is defined as:

C(S ′ → Sr) =
1

N

∑
R∈Sr

|R| max
R′∈S′

O(R,R′), (9)

where N is the number of pixels in the image. To com-
bine the information of five groundtruth segmentations, the
covering score for segmentation S ′ is defined by

C(S′) =
1

5

5∑
k=1

C(S ′ → Skr ) (10)

where Skr is the k-th groundtruth segmentation.

6.1. Generation of Segmentation Set

We use segmentation results generated by four algo-
rithms as our input. These four algorithms are SAS [14],
Normalized Cuts [21], Graph-based segmentation [8] and
Mean Shift [5]. The first two algorithms require the number
of regions in the segmentation result as an input parameter.
We get 26 segmentations from each of these two algorithms
by varying the number of regions from 5 to 30. The Graph-
based segmentation uses a Gaussian with standard deviation
σ to remove the digitization artifacts and a parameter k to
control the scale of observation which affects the size of the
segments. We vary σ from 0.4 to 0.8 with step size 0.1 and
k from 500 to 5000 with step size 100 to generate 230 seg-
mentations. For Mean Shift, we generate 238 segmentations
by changing the spatial search window size and bandwidth
of the search window from 2 to 15 with step size 1, and
from 7 to 15 with step size 0.5, respectively. These range of
parameters were chosen because they generate reasonable
but different segmentations for most of the test images.

When computing the disconnection probability mapD∗n,
we first compute D∗n,i where i = 1, 2, 3, 4 for the i-th al-
gorithm and D∗n is obtained by taking the average of the
D∗n,i. This process equally weights the contribution from
each algorithm.

6.2. Results

In our experiment, we use n = 5 as the patch size. The
filtration is generated by varying σ ∈ [0, σmax] with step
size 0.05. The thresholds we use are σmax = 0.8 and
τ = 0.4. Fig. 6 shows one segmentation result of the pro-
posed approach. Fig. 6 (a)-(d) shows the best segmentation
results in the segmentation set of the four algorithms men-
tioned in Section 6.1 based on the covering score. As we
can see, the result of the best score, 0.92, has some small
noisy regions and it is not visually better than the result of
SAS with score 0.90. This leads us to believe that the cov-
ering score may not be the best evaluation metric in this
scenario. As a future work, better metrics will need to be
identified to better quantify the quality of a segmentation.

Fig. 6 (f) shows the connectivity probability map 1−D∗n.
Darker color indicates the lower connection probability of
those regions. We note that this map properly captures the
contours of the hawk and the branch by assigning them a
low connection probability. The locations with high con-
nection probabilities correspond mostly to undesired seg-
mentation curves.

Fig. 6 (i)-(l) shows the labeled images for σ =
0, 0.25, 0.5, 0.8. For low σ, most of the segment curves ap-
pearing in the input segmentation set are captured. How-
ever, when σ increases from 0.25 to 0.5, the undesired seg-
mentation curves are removed. For σmax = 0.8, almost all
the remaining segment curves are visually correct.

Fig. 6 (g) shows the persistence diagram of the con-
nected components during filtration. The thresholds are
σmax = 0.8 and τ = 0.4. Connected components corre-
sponding to the points in the blue region are selected as our
segmentation result. Since the size of persistent connected
components can vary in a range of τ , we select the set of
points associated with the death time as the segmentation
result. This maximizes the size of the k-th persistent region
and captures the curves with probability greater than 0.8.

Fig. 6 (h) shows our segmentation result. Each region
is colored by its average value in the region. Since the cov-
ering set that we built is not an actual segmentation, we re-
cover a segmentation by extracting the skeleton of the cov-
ering set, which is shown in green in the image. It is ob-
served that this approach maintains the segmentation curves
that are visually desirable.

Fig. 7 shows more results of our proposed approach,
which is able to extract the segment curves that appear with
high probability in the input segmentation set. The covering
score of the proposed approach is not better than the best
score in the segmentation set. One reason for this is that
the results have some unlabeled regions. However, the pro-
posed approach tends to segment single object into smaller
number of regions which may be divided into more regions
by the base approaches. This is because the edges are ran-
domly detected inside an object due to the similarity within



Figure 6. (a)-(d) Results with best covering score for base segmentation approaches in the input segmentation set: SAS [14], Normalized
Cuts [21], Graph-based segmentation [8] and Mean Shift [5]. (e) Original image. (f) Connection probability map. (g) Persistence diagram
of the connected components during filtration. The thresholds are σmax = 0.8 and τ = 0.4. (h) Our segmentation result. The green
curves are the skeleton of the regions without label. (i)-(l) Filtration with σ = 0, 0.25, 0.5, 0.8. With σ increasing, the regions separated
by segment curves with low probability are merged early.

Figure 7. Best segmentation results of the four base-algorithms in the segmentation set and result of proposed algorithm. Left to right:
Original image, SAS [14], Normalized Cuts[21], Graph-based segmentation [8], Mean Shift [5], connection probability map, and proposed
algorithm.

the region of that object. For the same reason, we can re-
move the curves generated in the background. However,
if an undesired curve is always detected by all the algo-
rithm, our approach will fail since our model assumes that
frequently detected curves are valid segmentation curve.

7. Conclusion

In this paper, we propose a new approach to capture
the consensus segmentation information from a set of seg-
mentations generated by varying parameters of different al-
gorithms. The probability of a segmentation curve being
present is estimated based on our probabilistic image seg-



mentation model. A connection probability map is con-
structed to characterize the segmentation curves with high
probability. Then, persistence segments are extracted by ap-
plying topological persistence to the probability map. Fi-
nally, a robust segmentation is obtained with the detec-
tion of certain segmentation curves guaranteed. The ex-
periments demonstrate our algorithm is able to capture the
curves present consistently within the segmentation set.

In the future, we will extend our model and approach
by considering multiple neighborhoods of size n × n (i.e.,
treating n as another parameter). Also, we hope to improve
the segmentation result by identifying ways to select an ap-
propriate range of parameters for the base segmentation al-
gorithms, and a good estimate for the persistence threshold
τ via training using user-input.
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