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ABSTRACT

Image registration aims to identify the mapping between corresponding locations in an anatomic structure. Most
traditional approaches solve this problem by minimizing some error metric. However, they do not quantify the
uncertainty behind their estimates and the feasibility of other solutions. In this work, it is assumed that two
images of the same anatomic structure are related via a Lipschitz non-rigid deformation (the registration map).
An approach for identifying point correspondences with zero false-negative rate and high precision is introduced
under this assumption. This methodology is then extended to registration of regions in an image which is posed
as a graph matching problem with geometric constraints. The outcome of this approach is a homeomorphism
with uncertainty bounds characterizing its accuracy over the entire image domain. The method is tested by
applying deformation maps to the LPBA40 dataset.
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1. INTRODUCTION

In the medical imaging field, registration plays a very important role in the analysis of medical images for
diagnosis of pathologies. There is a broad variety of medical imaging registration problems and approaches that
can be categorized based on criteria such as dimensionality (2D vs. 3D), nature of registration basis, nature of
transformation, optimization procedure, imaging modalities, subject and object.1 In particular, rigid registration
methods2,3 are used when the anatomical structures are assumed to be the same up to some rigid transformation.
More generally, non-rigid transformations capture more complicated deformation models. Approaches to identify
these transformations include the use of mutual information,4 fluid registration techniques,5 and elastic models.6

A rigid registration method that combined intensity and gradient information for registration of 3-D ultra-
sound with MR images was introduced by Roche et. al.7 To improve the robustness of rigid registration method,
Ourselin et. al.8 introduced a framework that uses a multi-scale hierarchy strategy.

Figure 1. Registration Approach: (a) Test point x0 (in red) on image before deformation. (b) Corresponding feasible
matching set Sx0 (in blue) and true matching (in red). (c) Delaunay triangulation of selected match points. (d) Uncertainty
bound in pixels (image has size 149× 188). (e) Difference in pixels between truth and estimated deformation maps.
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Varied pathologies give rise to abnormal structures and the transformation required becomes highly non-
linear. Non-rigid registration methods4–6 use different approaches such as mutual information, fluid registration
and elastic models to solve this problem. A statistically-assisted fluid image registration algorithm was introduced
by Brun et. al.5 which used a nonconservative Lagrangian approach. Schnabel et. al.9 present a framework
for non-rigid registration, they combined multi-resolution optimization with free form deformations. Bhatia et.
al.10 propose a groupwise, non-registration algorithm to simultaneously register all subjects in a population to
a common reference that is calculated by using the gradient projection method for constrained optimization to
maximize the similarity between the images.

Elastic registration methods summarized by Moghe et. al.11 account for deformations that are elastic in
nature. Klein et. al.12 have developed “elastik”, an intensity based medical image registration which could be
tailored to specific applications by using suitable parametric methods. Many non-rigid registration methods use
optimization to find the global minimum. Jenkinson and Smith13 proposed a global optimization method to
reliably find the global minimum to have a robust affine registration of brain images. Mark et. al.14 focus on the
optimization of the intensity-based cost function to reduce the mis-registration due to getting trapped in local
minima. Most of these methods mentioned above do not quantify their uncertainty.

In this paper we propose a new non-rigid markerless registration method based on point matching under
the assumption that two images are related via a Lipschitz non-rigid transformation. This approach is tested
on 2D images but is also applicable to 3D. Sets of feasible matching points are obtained by constructing a
functional descriptor that guarantees the inclusion of the correct matching point under the specified deformation
bounds. Image registration is performed by incorporating these feasible sets into a graph matching problem with
geometric constraints. Finally, uncertainty bounds due to the size of the feasible matching sets are combined to
generate bounds on the estimated map. Fig. 1 illustrates a result based on our approach. The rest of the paper
is organized as follows: section 2 describes our method, section 3 presents our experimental results, and section
4 provides some final remarks.

2. METHOD

2.1 Image Model

We assume that two images (Ik : Ωk → R where k ∈ {0, 1} and Ωk ⊂ R2) are related by:

I1 ◦ f10(x) = I0(x) (1)

where f10 : Ω0 → Ω1 is a homeomorphism (with inverse f01) that satisfies:

(1−Kd)‖f10(x)− f10(y)‖ ≤ ‖x− y‖ ≤ (1 +Kd)‖f10(x)− f10(y)‖. (2)

for all x, y ∈ Ω0, where Kd is a factor bounding the unknown deformation. Throughout the rest of the paper,
we assume that the constant Kd is known but the actual deformation mappings f10 and f01 are unknown.

2.2 Robust Pre-Processing

Before attempting to extract any descriptors, images are pre-processed in a way that guarantees the descriptors
will be robust to the unknown deformation, noise, and the discretization process. Images are filtered by first
computing the cumulative distribution Fk,B(x,r) : R→ [0, 1] of values of image Ik, k ∈ {0, 1}, over a neighborhood
B(x, r), where B(x, r) is the ball with radius r centered at x. That is,

Fk,B(x,r)(s) =
1

πr2

∫
B(x,r)

1I−1
k (−∞,s](y)dy for k ∈ {0, 1}, (3)

where 1A(·) is the indicator function for set A. This function indicates the fraction of points in B(x, r) that have
intensity values below s. The pre-processed images are defined as:

J0−(x) = F−1
0,B(x,(1+Kd)ρ)(τ−), J0(x) = F−1

0,B(x,ρ)(τ), J0+(x) = F−1
0,B(x,(1+Kd)ρ)(τ+),

J1−(x) = F−1
1,B(x,(1−Kd)−1ρ)(τ−), J1(x) = F−1

1,B(x,ρ)(τ), J1+(x) = F−1
1,B(x,(1−Kd)−1ρ)(τ+)

(4)



where

τ− =

(
1−Kd

1 +Kd

)2

τ , τ+ = 1 +

(
1−Kd

1 +Kd

)2

(τ − 1), (5)

ρ indicates the size of the neighborhood used for filtering. By choosing τ = 0.5, then Jk is the outcome of
applying a median filter to Ik, which has well-known robustness properties. When Kd = 0.2, τ− = 0.22 and
τ+ = 0.78. Jk− and Jk+ are similar to the outcome of applying dilation and erosion to Ik. Fig. 2 (left) shows
some pre-processed images for two deformed images.

Theorem 2.1. Given the above definitions, for all ρ > 0,

Jk−(x) ≤ J(1−k) ◦ f(1−k) k(x) ≤ Jk+(x) for k ∈ {0, 1}. (6)

This theorem is essential for the development of the robust descriptors that are introduced in the next section. The
parameter ρ is selected to be large enough to perform a robust filtering that removes effects due to discretization
and noise, which maintains Theorem 2.1. Experiments indicate that a value of ρ = 2 is sufficient for most
applications. Larger value of ρ produces more robustness to discretization and noise, but yields larger potential
matching set. Note that when ρ → ∞, the filtered images are constant images and all the points in I1 will be
potential matching points to points in I0.

Note that this filtering does not require exact knowledge of the image mapping f10 and f01, but instead
makes use of the provided bounds.

2.3 Robust Functional Image Descriptor

In order to characterize a region around a point, a function is extracted to describe how color intensity changes
as a function of distance. The localized upper kernel function is defined as

DU
α (x, z|R) = inf

x∗
{‖x∗ − x‖

∣∣x∗ ∈ J−1
α [z,∞) ∩B(x,R)} (7)

where α ∈ {0−, 0, 0+, 1−, 1, 1+} and the radius R specifies the support of the descriptor, which is a ball with
radius R around point x. Note that this ball is not the same ball used in pre-processing. This function captures
the minimum distance between point x and points with intensity value greater or equal to z within the ball
B(x,R), which can be computed by taking the distance transform of the sets J−1

α [z,∞). When the intensity of
all points within the ball is less than z, then DU

α (x, z|R) = R.

Theorem 2.2. Given a point x0 ∈ Ω0 with corresponding matching point x1 = f10(x0) ∈ Ω1 and a radius R,
the localized upper kernel function satisfies:

(1 +Kd)
−1DU

0+(x0, z|R) ≤ DU
1 (x1, z|R1L) , DU

1 (x1, z|R1U ) ≤ (1−Kd)
−1DU

0−(x0, z|R),
(1−Kd)D

U
1+(x1, z|R) ≤ DU

0 (x0, z|R0L) , DU
0 (x0, z|R0U ) ≤ (1 +Kd)D

U
1−(x1, z|R)

(8)

for all test intensity value z, where R1L = (1 + Kd)
−1R, R1U = (1 − Kd)

−1R, R0L = (1 − Kd)R and R0U =
(1 +Kd)R. Given that SUx0

⊂ Ω1 is the set of points that satisfy these conditions, then x1 ∈ SUx0
.

This theorem is a criteria for determining potential matching points. That is, it gives conditions between the
functional descriptors that need to be satisfied for corresponding matching point. SUx0

⊂ I1 can be obtained by
checking these conditions between functional descriptors for x0 ∈ I0 and functional descriptors for all points in
I1.

Similar to localized upper kernel function, we define localized lower kernel function as

DL
α(x, z|R) = inf

x∗
{‖x∗ − x‖

∣∣x∗ ∈ J−1
α (−∞, z] ∩B(x,R)} (9)

where α ∈ {0−, 0, 0+, 1−, 1, 1+}. Also, we have the theorem below:

Theorem 2.3. Given a point x0 ∈ Ω0 with corresponding matching point x1 = f10(x0) ∈ Ω1 and a radius R,
the localized lower kernel function satisfies:

(1 +Kd)
−1DL

0−(x0, z|R) ≤ DL
1 (x1, z|R1L) , DL

1 (x1, z|R1U ) ≤ (1−Kd)
−1DL

0+(x0, z|R),
(1−Kd)D

L
1−(x1, z|R) ≤ DL

0 (x0, z|R0L) , DL
0 (x0, z|R0U ) ≤ (1 +Kd)D

L
1+(x1, z|R)

(10)



Figure 2. Functional Descriptors and Conditions for Matching. A set of pre-processed images are shown for base image
I0 (first column) and test image I1 (second column). From top to bottom, we observe Jk− and Jk+. First and third
conditions in Equation 8 on localized upper kernel function stated in Theorem 2.2 are illustrated (right plots). Functions
in black are associated with I0 and functions in red are associated with I1. The range of z is [0, 255], but only z ∈ [150, 255]
is shown. In this case, all the four functions are equal to 0 for z ≤ 150. Note that the ordering between functions is
satisfied as stated by the theorem.

for all test intensity value z. Given that SLx0
⊂ Ω1 is the set of points that satisfy these conditions, then x1 ∈ SLx0

.

The set Sx0
= {x

∣∣x ∈ SUx0
∩ SLx0

} ⊂ Ω1 is referred to as the potential matching set for x0 ∈ Ω0 where
x1 = f10(x0) ∈ Sx0 . Fig. 2 (right) illustrates condition 8 for one matching pair and Fig. 3 shows an example of
single point matching using this criteria.

2.4 Deformation Map Estimation

As introduced above, the matching result of one point is a potential matching set that guarantees the inclusion
of the correct matching point, but the accurate position of the correct matching point is still unknown. A smaller
potential matching set is required to estimate the position of correct matches more accurately. To achieve this, we
extend our criteria for single point matching to region registration by considering a set of points P0 := {x0,i} ∈ Ω0

and computing their potential matching sets Sx0,i
. These points are connected to each other using edges from

Figure 3. Single Point Matching (Kd = 0.2): (a) Test point (in red square). (b) Deformation image with maximum 20%
deformation. (c) Support region of the descriptor (blue circle with radius 20 pixels). (d) Potential matching set (in blue)
for this test point.



Figure 4. Map Estimation: (a) Test set P0 and Delaunay triangulation. (b) Potential matching sets Sx0,i for set P0.
Different colors denote different test points in P0. (c) Potential matching sets S′x0,i

for set P0 after applying distance
constraint. (d) Potential matching sets S′x0,i

for set P ′0 and the minimum circle covering each S′x0,i
with radius less than

γ. (e) Estimated matching points (in red) and groundtruth (in blue) for set P ′0. (f) Estimated deformation image.

their Delaunay triangulation.15 Some wrong matches in potential matching sets can be removed by applying a
geometry constraint. Also some test points in P0 will be removed by the size of their potential matching sets.

We note that given points x0, y0 ∈ Ω0, then from formula 2, we have

(1 +Kd)
−1‖x0 − y0‖ ≤ ‖f10(x0)− f10(y0)‖ ≤ (1−Kd)

−1‖x0 − y0‖. (11)

The above result can be used to determine the feasibility of a point x1,i ∈ Sx0,i by checking if the condition is
satisfied by any point x1,j ∈ Sx0,j , where x0,i and x0,j are connected by an edge. If not, then the point x1,i is
an unfeasible matching point and removed from Sx0,i

. The remaining sets are still guaranteed to contain the
correct matching points, since the correct matches will always satisfy condition 11.

To be more accurate, the set P0 is refined by selecting only those points that have a “small” matching set.
This is done by making sure that Sx0,i is connected, and all the points in matching set are within a distance γ
from its center of mass. Let the remaining set be P ′0 and the corresponding matching points are estimated by

the center of each remaining matching set S′x0,i
. Finally, the estimated homeomorphism f̂10 and f̂01 is obtained

using Radial basis Functions.16 The estimated deformed image is obtained by Î1(x) = I0 ◦ f̂01(x). Fig. 4 shows
the process of deformation map estimation.

2.5 Uncertainty Computation

Statistical analysis of brain images (e.g. detection of lesions in the brain) often relies on the extraction of
correlation information at certain voxel locations. It is often assumed that the registration images are properly
aligned, which can introduce some bias on the statistical models. However, if a bound on uncertainty on the
registration map was provided, this could be built into the modeling tools leading to more accurate statistical
models. In this section, we will introduce a way to determine the uncertainty of the estimation map.

First we define the feasible region V ⊂ Ω1 for a point x0 ∈ Ω0 that is a collection of the possible positions of
correct match for x0. Let x̂1 ∈ Ω1 be the estimated matching point for x0, then the uncertainty of x0 is defined
as

U = max
x
{‖x− x̂1‖

∣∣x ∈ V }. (12)

A new Delaunay triangulation is obtained for the set P ′0 and we only consider the points within these triangles.
For point x0,i ∈ P ′0, the correct match can be any point in its matching set which is exactly the feasible region
of x0,i. Then the uncertainty of those points is defined as

Ui = max
x
{‖x− x̂1,i‖

∣∣x ∈ S′x0,i
}, (13)

where x̂1,i ∈ Ω1 is the estimated matching point for x0,i. Note that the uncertainty for the points in P ′0 is less
than γ by design.

The uncertainty for the points in P ′0 and the Lipschitz bound on the deformation are used to specify uncer-
tainty within each triangle of the Delaunay triangulation. For those points, the feasible region is obtained from



the intersection of feasible regions with respect to each point in P ′0. According to formula 2, the feasible region
of a point x0 6∈ P ′0 with respect to point x0,i ∈ P ′0 is

V i = {x
∣∣(1 +Kd)

−1(‖x0,i − x0‖ − Ui) ≤ ‖x̂1,i − x‖ ≤ (1−Kd)
−1(‖x0,i − x0‖+ Ui), x ∈ Ω1}, (14)

where x̂1,i is the estimated matching point for x0,i and Ui is the corresponding uncertainty. To reduce the
complexity, for x0 6∈ P ′0 in a triangle, we only consider three corresponding vertices to compute its feasible
region. That is,

V = ∩3
i=1V

i, (15)

and its uncertainty is
U = max

x
{‖x− x̂1‖

∣∣x ∈ V }, (16)

where x̂1 = f̂10(x0) is the estimated matching point of x0. Note that the uncertainty of these points are
determined by the size of triangle and the uncertainty of its vertices.

Fig. 1 (c) and (d) illustrate one example of new Delaunay triangulation for set P ′0 and the map uncertainty.
From (c), we can see uncertainty for points in P ′0 is small, but it is larger for other points. The upper left part
has the highest uncertainty because the triangle is large and the uncertainty for the upper leftmost point in P ′0
is high.

3. RESULTS

We perform our analysis on the MRIs of 40 brains from the LPBA40 dataset† with size 240 × 270 (after some
zero-padding). We selected the 80-th transverse slice. We apply 10% and 20% deformations to the original
images. The deformation we consider is:

f01

(
z1

z2

)
=

(
z1 + 0.5c cos(0.02z2)
z2 + 0.5c cos(0.02z1)

)
(17)

Figure 5. Results of proposed method on the labeled LPBA40 dataset with 20% deformation. Best performance (row 1)
and worst performance (row 2) results are shown. Original image (1st column), deformed image (2nd column), original
image transformed by estimated deformation using our method (3rd column), and error on deformation map (4th column).

†http://www.loni.usc.edu/atlases/

http://www.loni.usc.edu/atlases/


Figure 6. (a) Average time cost as a function of deformation constant Kd applied to 10% deformation images. (b) Average
time cost as a function of grid size applied to 20% deformation images.

where c specifies a maximum deformation factor (e.g., c = 10 indicates a maximum deformation of 10%). The
test points P0 are selected to come from a uniform grid, ρ is select to be 3 and R = 20. The registration process,
which has the single point matching implemented in C++ and the graph matching in MATLAB, is applied in a
3.4 GHz computer with 16GB RAM.

In order to evaluate our method we use three metrics: Mapping Error (ME), Target Overlap Score (TOS),
and Volume Similarity Coefficient (VSC).17 Mapping Error measures the average difference between the truth
and estimated maps. It is defined as

ME =
1

|Ω0|

∫
Ω0

||f10(x)− f̂10(x)||2 dx (18)

where |Ω0| is the area of Ω0, f10 is the true map and f̂10 is the estimated map.

For TOS and VSC, we consider the brain segmentation available in the dataset. These metrics quantify the
amount of overlap between the regions obtained by using the true and estimated deformations. We only consider
regions of size greater than 50 pixels for our analysis in order to avoid large overlap discrepancies due to small
offsets. Samples are shown in Fig. 5. The metrics are defined as

TOS =

∑
r |Rr ∩ R̂r|∑

r |Rr|
and V SC = 2

∑
r(|Rr − R̂r|)∑
r(|Rr|+ |R̂r|)

, (19)

where Rr and R̂r denote the r−th true and estimated region in the brain respectively. For VSC, smaller values
denote better registration.

Figure 7. Box plots of evaluation results of proposed method for Mapping Error (left), Target Overlap Score (middle)
and Volume Similarity Coefficient (right) metrics applied to the LPBA40 dataset for 20% deformation using uniform grid
with 5, 10, 20, 25 and 30 pixels between points as test points.



Figure 8. Box plots of evaluation results of proposed method for Mapping Error (left), Target Overlap Score (middle) and
Volume Similarity Coefficient (right) metrics applied to the LPBA40 dataset with 10% and 20% deformation.

Fig. 6 and 7 show the average time cost and evaluation for 40 images in LPBA40 dataset using the proposed
method. Fig. 6 (a) is the average time cost for 10% deformation using deformation constant Kd = 0.15, 0.2, 0.25
and 0.3. Fig. 6 (b) is the time cost for 20% deformation using uniform grid with 5, 10, 20, 25 and 30 pixels
between points in the test point set. Fig. 7 shows the results for the three metrics applied to the 20% deformation
with grid size 5, 10, 20, 25 and 30 pixels. Time cost increases as Kd increases, since larger Kd yields larger
potential matching sets for each test point, which gives more points to be checked for feasibility. But when
Kd is in the range of [0.15 0.3], it does not change too much. For grid size, smaller grid sizes, which means
larger number of test points, take more time since more computation is required for points matching and graph
matching. Grid size 5 which has around 800 test points takes about 700 seconds, and grid size 10 with around
200 test points takes about 120 seconds. When the grid size is greater than 20, which has less than 50 test points,
it takes less than 30 seconds. From Fig. 7, the performance of different grid size does not change a lot. Grid
size 5 has the best mapping error and target overlap score. The volume similarity cofficient values are relatively
small and do not vary a lot with grid sizes. Grid size 30 has the best volume similarity coefficient, but the worst
mapping error and target overlap score. Grid size 10, 20 and 25 have good performance for all of three metrics,
but grid size 10 is time consuming as shown in Fig. 6 (b). Thus, grid size 20 and 25 are proper choices. In the
following experiments, we choose uniform grid with 20 pixels between points as test point set P0.

Fig. 8 summarizes the results for the three metrics applied to the LPBA40 dataset with 10% and 20%
deformation. It is observed that the average difference between truth and estimated map is less than 2.6 pixels
for both 10% and 20% deformation, which corresponds to less than 2% of the image length.

Fig. 5 shows the best and worst results of our method, with respect to the target overlap score, for a 20%
deformation. In the best case, the maximum difference between the truth and estimated deformation is less than
4 pixels. For the worst case, it is less than 10 pixels. This large error is due to homogeneity in the imaging data
which leads to large feasible matching sets and estimated matching points that are far away from the true values.

We compare the proposed method with the fluid registration method, SAFIRA5 and run experiments to

Figure 9. (a) Box plots of evaluation results of SAFIRA5 (40 iterations) for TOS (left) and VSC (right) applied to the
LBPA40 dataset with 10% and 20% deformation. (b) Box plots of evaluation results of SAFIRA5 (40 iterations) with
initialization by proposed method for TOS (left) and VSC (right) applied to the LBPA40 dataset with 10% and 20%
deformation.



Figure 10. Sample result of images (first row) and corresponding labeled images (second row). (a) Original image. (b)
20% deformation image. (c) Result of SAFIRA5 with pixel max = 0.33 and 40 iterations. (d) Result of proposed method
with ρ = 3, R = 20, Kd = 0.2 and gridsize = 20. (e) Result of SAFIRA (pixel max = 0.33 and 40 iterations) with
initialization by proposed method.

see how initialization by the proposed method improves SAFIRA performance. Overall, the proposed method
performed better than SAFIRA without any initialization, and applying SAFIRA to refine our results improves
performance for larger deformations. Fig. 9 shows the evaluation results of SAFIRA without and with initial-
ization by the proposed method for TOS and VSC applied to LBPA40 dataset with 10% and 20% deformation.
Fig. 10 illustrates one sample result. Table 1 summarizes TOS and VSC score of three different registration
approaches applied to LBPA40 dataset with 10% and 20% deformation.

Comparing Fig. 8 and 9 (a), it is observed that the proposed method has better performance for this data
set. Fig. 10 (c) and (d) show sample results for proposed method and SAFIRA. The deformed image generated
by the latter has lost some detail information which can be attributed to the re-gridding steps needed in the
algorithm. Compare Fig. 9 (a) and (b), initialization by proposed method improves both TOS and VSC scores.
The result of SAFIRA with our initialization in Fig. 10 (e) produces images very similar to the deformed image
shown in column (b), which is better than pure SAFIRA shown in column (c).

Method
10% 20%

TOS VSC TOS VSC
SAFIRA (40 iterations) 0.6313 0.1060 0.5396 0.1383
Proposed Method 0.8351 0.0516 0.7999 0.0701
SAFIRA with Initialization (40 iterations) 0.8340 0.0545 0.8671 0.0695

Table 1. TOS and VSC scores for three different registration approaches applied to LBPA40 dataset.



4. CONCLUSION

In this paper, a new non-rigid registration methodology is introduced which makes use of a Lipschitz deformation
model in order to provide guarantees on the registration results. The uncertainty on the estimated deformation
is derived from the size of feasible matching sets that are computed for individual point matches. Experiments
using the LPBA40 dataset show that our method can estimate deformations with high-accuracy.

The results from our technique can be further refined by using them as an initialization to other approaches
such as fluid or elastic registration methods. In the future, we aim to extend our approach to provide not only a
single estimated map with large uncertainty, but also a few candidate maps with lower uncertainty, in order to
provide more refined outcomes. Furthermore, the implementation will be extended to 3D imaging modalities in
order to make it applicable to many other scenarios.
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