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Abstract—In this paper, we propose a methodology for robust
obstacle detection in outdoor scenes for autonomous driving
applications using a multi-valued stereo disparity approach.
Traditionally, disparity maps computed from stereo pairs only
provide a single estimated disparity value for each pixel. However,
disparity computation suffers heavily from reflections, lack of
texture and repetitive patterns of objects. This may lead to
wrong estimates, which can introduce some bias on obstacle
detection approaches that make use of the disparity map. To
overcome this problem, instead of a single-valued disparity
estimation, we propose making use of multiple candidates per
pixel. The candidates are selected from a statistical analysis
that characterizes the performance of the underlying matching
cost function based on two metrics: The number of candidates
extracted, and the distance from these candidates to the true
disparity value. Then, we construct an aggregate occupancy map
in u-disparity space from which obstacle detection is obtained.
Experiments show that our approach can recover the correct
structure of obstacles on the scene when traditional estimation
approaches fail.

I. INTRODUCTION

Obstacle detection is a fundamental step for autonomous
navigation. Correctness is of particular interest in applications
areas such as autonomous driving systems [1], [2] for which
safety is of big concern. However, obstacle detection often
depends on reliable depth estimates. Stereo depth maps esti-
mates have gained some popularity in the transportation area
due to the affordable hardware and richness of contextual
information. Nevertheless, the outcome from state of the
art algorithms is not always reliable due to a number of
visual artifacts. The stereo matching step, which requires
finding correspondences between pairs of rectified images, is
a challenging task due to reflections, lack of texture, weather
conditions, and repetitive patterns present in objects. Most
approaches [3], [4], [5] rely on the computation of a matching
cost from which the minimum is often taken as a possible
correspondence between stereo pairs. However, due to the
nature of this problem, the true matches may not fall on the
minimum of this function but in a local minimum instead.
This can lead to incorrect matches. Traditional approaches
may also include some indicator function of the correctness or
certainty of the match found, which in some cases is used to
remove possible mismatches. This leads to depth values being
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Fig. 1. (a) Environment model. Different colors denote different depth of
obstacles detected. Only obstacles above the ground plane and below a
maximum-height plane are detected. (b) Corresponding obstacle detection in
u-disparity space. Images used for analysis are from the KITTI dataset [6],
[7], [8].

missing, which can also cause a problem in the identification
of obstacles.

There are a number of approaches aiming to make disparity
computations more robust [4], [9], [5] and extracting obstacle
detections from these disparity results in a robust way [10],
[11]. Our approach attempts to construct a more reliable occu-
pancy map from an alternative representation of the disparity
map, which keeps track of multiple-candidate disparity values.
We rely on existing disparity computation algorithms to extract
these candidates, and our occupancy map can be used as an
input for approaches such as Stixels [10] for robust obstacle
detection. In order to capture correct matches on the disparity
computations, we make use of multiple-candidates associated
with different local minima of the matching cost function
instead of relying on a single estimate. These candidates are
obtained from an statistical analysis of the performance of the
disparity algorithm being used in order to guarantee that we
capture the correct structure in our representation with high-
confidence. This set of candidates is then used to construct an
accumulated occupancy map which provides the probability
of occupancy of an obstacle at any given location.

The objective of this paper is to illustrate the more reliable
occupancy maps that are obtained by using our multi-candidate
approach as oppose to direct computations with the output of
a disparity algorithm. As future work, we will integrate our



pipeline with robust obstacle detection approaches (e.g., [10])
in order to quantify the precise impact of our representation.

The remainder of this paper is organized as follows. Section
II gives an overview of the current state-of-the-art. Section
III gives the problem formulation and overview of our ap-
proach. Section IV describes the ground segmentation method
used. Section V presents the generation of the multi-valued
disparity map. Section VI presents the aggregate occupancy
map computation using multi-valued disparity map. Section
VII describe a simple obstacle detection approach from the
aggregate occupancy map. Results of our proposed method
are discussed in section VIII. Finally, section IX summarizes
the paper and discusses future work.

II. RELATED WORK

This section provides a brief overview of the state-of-
the-art of different disparity map computation and obstacle
detection methods. We focus on the current state-of-art of
stereo vision based obstacle detection approaches, which make
use of disparity maps.

1) Disparity Map Computation: In [3], Hirschmuller
presents a classical method for disparity map computation. A
pixelwise, mutual information based matching cost is used for
matching between stereo pairs. This method is able to perform
a fast pathwise optimization from all directions. In [12],
disparity map is estimated by applying an iconic Kalman filter
and known ego-motion. It is able to reduce the variance of
disparity of each pixel and increase the density of the disparity
map. In [4], to improve the robustness of the correspondence
matching, Hermann and Klette introduce an iterative semi-
global matching algorithm. The search space for disparity is
iteratively reduced by using a pre-evaluated disparity prior.
In order to improve fusion of disparity information, Wang
et al. in [13] propose a post-aggregation method based on
the Dempster-Shafer Theory (DST). Recently, Luo et al. in
[14] propose an efficient deep-learning based stereo matching
method, which is able to provide high accurate disparity maps
in less than a second of GPU computation.

2) Obstacle Detection: Zhang et al. in [15] present an on-
road obstacle detection algorithm using stereo cameras. Instead
of calculating the correspondence for each pixel, they rely on
the parameters of stereo cameras to determine the disparity
search space for each pixel. Samadi et al. in [9] provide a
robust obstacle detection method against illumination changes
by using a differential image transform algorithm. Khalid
et al. [16] provide a fast algorithm for obstacle detection
based on stereo vision system using Hough transform and
morphological processing. Zhang et al. [17] propose a method
for obstacle detection in unstructured environments based on
salient obstacle extraction. First, salient obstacles are extracted
through a fast salient obstacle detection method. Then the
detection of small obstacles is refined through the continuity
and the height constraints among 3D points. Wei et al. in
[18] presents a new methodology for robust segmentation and
detection of obstacles. In their method, a topological persis-
tence analysis is performed on an occupancy map constructed

by using UV disparity methodology. It is able to choose the
regions that are most persistent which leads to a more robust
segmentation result.

III. PROBLEM FORMULATION AND APPROACH

In order to simplify the mathematical formulation, we make
use of a very simplistic model of the world (see Fig. 1).
However, we will show the applicability of the approach to real
scenarios throughout this paper. Let the 3D environment be
defined by the xy-plane (referred to as the ground plane) and
prismatic obstacles erected perpendicularly from the ground
to a height of h. The stereo cameras are parallel to each other
with viewing direction along the y-axis and with displacement
along the x-axis. We will further assume that an obstacle is
always present along the u-axis of the image domain.

The stereo pair of rectified grayscale images IL : ΩL → R+

and IR : ΩR → R+ defined over the image domains ΩL ⊂ R2

and ΩR ⊂ R2 satisfy the relation:

IL(u, v) = IR(u, v + d(u, v)), (1)

where (u, v) ∈ ΩL and d : ΩL → R+ is the disparity map
associated with the distance of an object visible by images IL
and IR. For simplicity, we ignore the effect of occlusions and
assume that d is defined over its entire domain. We letO ⊂ ΩL

be the set of points in the image domain that correspond to
obstacles and not the road, and define the Obstacle Depth
Function as D(u) := d(u, v) where (u, v) ∈ O. Note that
due to our assumptions about the setup of the camera and the
obstacles, d(u, v) will be the same along the v-axis as long
as the visible point correspond to an obstacle. Our objective
is a proper estimation of D(u), which is dependent on a good
estimate of the disparity map d(u, v).

Stereo disparity algorithms often depend on the computation
of a matching cost function Cp : [a, b] → R+ for each pixel
p = (u, v) ∈ Ωl, where [a, b] denotes the disparity search
range, and a and b are constants. The matching is challenging
due to reflections, lack of texture and repetitive patterns of
objects. In these cases, the correct disparity may fall in local
minimum of the matching cost curve instead of the global
minimum cost. In order to capture the correct disparity values,
we make use of multi-candidates per location in the image
domain. These candidates are associated with local minima of
the cost function, and form our multi-valued disparity map.
We compute an aggregate occupancy map from this set of
candidate matches. Fig. 2 shows the pipeline of our proposed
approach: first, a ground plane is fitted robustly from the data

Fig. 2. Overview of proposed approach.



by making use of the disparity values associated with the
global minima from the matching cost functions (section IV);
then, the multi-valued disparity map is constructed (section
V); followed by computation of the aggregate occupancy
map (section VI); and finally, an obstacle depth function is
estimated (section VII).

For our implementations, we make use of the matching cost
defined for the Semi-Global Block Matching approach [3] with
a = 0 and b = 127. However, this can be extended to any
other disparity computation algorithms based on a matching
cost function.

IV. GROUND FITTING

The ground plane is computed by fitting a plane in the uvd-
space, where p = (u, v) corresponds to the pixel location and
d to the associated disparity value. For the fitting, we make use
of a point cloud constructed by selecting the global minimum
of the matching cost function Cp as a corresponding disparity
value of the pixel. RANSAC
EDIT[19] is used for a robust fitting of the plane.

We parameterize the plane using the form v = g0(u, d) since
we will be considering bounds on the heights of obstacles
in the physical space for their detection. In particular, we
will only consider candidate points (u, v, d) that satisfy the
constraint

g0(u, d) +
auhl
avb

· d ≤ v ≤ g0(u, d) +
auhu
avb

· d (2)

where au and av are the intrinsic focal length parameters of
the camera in pixels, b is the distance of the baseline of the
stereo camera system, hl and hu are the heights above the
estimated ground plane used to identify obstacle pixels. In
our experiment, we use hl = 200 and hu = 1700 for KITTI
dataset [6], [7], [8]. Using this setup, the ground plane for
ground segmentation is 0.2 meters higher than the fitting plane
to make sure we remove all the ground pixels, and we cut
every thing above 1.7 meters from the fitting plane to avoid
the influence of obstacles above the car. Then the height for
obstacle detection is around 1.5 meters in real world space.

V. MULTI-VALUED DISPARITY MAP

As mentioned above, finding correspondences in stereo pairs
is heavily affected by visual artifacts such as reflections,
lack of texture and repetitive patterns. Fig. 3 (a) shows an
example of wrong disparity estimation by Semi Global Block
Matching (SGBM) [3], [20] implemented by OpenCV due to
the repetitive structure present in the fence. Fig. 3 (b) shows
the cost function Cp for the point highlighted by a red circle
in the image. The cost function applied in OpenCV-SGBM
is the Birchfield-Tomasi subpixel metric proposed in [21].
This cost is the measurement of absolute minimum difference
of intensities between two pixels in each direction along
the epipolar line[3]. The SGBM algorithm select a disparity
value close to the global minimum of the function while the
groundtruth is at one of the local minima. The periodic pattern
in the cost function is due to the repetitive pattern of the fence,

Fig. 3. (a) Example of wrong disparity estimation by SGBM due to the
repetitive structure presenting in the fence. Disparity map shows the wrong
disparity estimation in some regions of the fence (top). Right image (bottom)
shows the estimated correspondence (red triangle) and ground truth (green
square) for the test point in left image (middle). (b) Cost function Cp of the
test point highlighted in (a). The estimation is near the global minimum, but
the ground truth is near a local minimum. Notice that each local minimum
corresponding to a bar of the fence.

which makes it difficult (if not impossible) to determine which
one is the correct matching using only local information.

Before further discussion, we first define the local minimum
of a cost function. Let d̄p,i be a local minimum of the cost
function Cp of a pixel p if it satisfies Cp(d̄p,i) ≤ Cp(d̄p,i−1)
and Cp(d̄p,i) ≤ Cp(d̄p,i +1). Note that, although the disparity
value is computed to sub-pixel accuracy, the local minimum
is computed to pixel accuracy.

One way to capture the correct disparity value is to pick all
the local minima,

{
d̄p,i

}
, of the cost function Cp as possible

disparity candidates for one pixel in the left image. However,
this can lead to too many candidates. In order to select a subset
of these candidates, we define the cost ratio of the i-th local



Fig. 4. Threshold choice for disparity candidate selection. (a) ε(0.95) as a
function of parameter τ . (b) Average number of candidates as a function of
parameter τ . A choice of τ = 0.4 guarantees that ε(0.95) < 5 and that the
number of candidates will be below 5 as well. A total of 120 training stereo
pairs were used for selecting this threshold.

minimum as the criteria of picking candidates by

rp,i =
Cp(d̄p,i)

mind Cp(d)
. (3)

This ratio was selected as a criteria since the values of the cost
functions can vary greatly between different pixel locations,
which makes it is unrealistic to pick a global threshold for the
entire image based on cost alone. Other than cost ratio, we
also tested the prominence ratio as a criteria, which is defined
by the ratio of maximal prominence among all local minimum
and prominence of a certain local minimum. The experiment
showed that cost ratio was a better choice. As part of our future
work, we will test the performance of using confidence scores
discussed in [22] as our another candidate selection criteria.
A subset {dp,j} of candidate disparity values is selected by
keeping the local minima with cost ratio rp,j below a threshold
τ and for which the point (p, dp,j) satisfy the ground plane
condition in Eqn. 2.

The value of τ is selected statistically from a set of
120 stereo pairs from the KITTI dataset (which includes
groundtruth depth estimates) in order to make sure that the
candidate points includes a point near the true disparity
with high confidence, while minimizing the overall number
of candidates. This is done by enforcing that 95% of the
candidate sets have a candidate within a distance ∆ of the
true disparity. The value of ∆ is empirically selected to be 5
pixels as it offers a good compromise between the number of
candidates and the distance from the true disparity.

In order to perform the analysis described above, we com-
pute for each pixel p the minimum distance to the true disparity
value

εp(τ) = min
j
|dtruep − dp,j |, (4)

where dtruep is the true disparity value for the corresponding
pixel, and j is the index for the candidate disparity values.
We also keep track of the number of candidates np for
corresponding pixel. These quantities are accumulated over
all pixels and images in the dataset. Additionally, we compute
ε(0.95)(τ) as the distance associated with the 95% percentile
of all εp values. We ensure that at least one candidate is within
∆ from the true value for 95% of all the samples by picking

Fig. 5. (a) ε(0.95)(0.4) of each stereo pair in test set. (b) Average number
of candidates per pixel of each stereo pair in test set. For most of pairs,
ε(0.95)(0.4) < 5 and average number of candidates per pixel is less than 6.

a value of τ that satisfies ε(0.95)(τ) ≤ ∆. Fig. 4 illustrates the
curves obtained from ε(0.95)(τ) and the average number of
candidates as a function of τ . Since the number of candidates
increases monotonically with the value of τ , then it is sufficient
to pick the largest value of τ for which ε(0.95)(τ) ≤ ∆. From
our analysis, this corresponds to τ = 0.4, which gives an
average number of candidates less than 5.

As discussed above, the value of τ was selected using a set
of 120 stereo pairs for training. A different set of 73 stereo
pairs are used for testing the performance of this threshold.
Fig. 5 (a) and (b) illustrate ε(0.95) and the average number
of candidates for each test stereo pair for τ = 0.4. It is
observed that ε(0.95)(0.4) is less than 5 for most of the stereo
pairs and the average number of candidates is less than 9 for
all except one stereo pair. That is, for most pixels in each
stereo pair, there exists at least one candidate disparity within
5 pixel distance of the ground truth and with average number
of candidates less than 9.

Notice that this threshold may change if we use a dataset
with a very distinct type of images or a different disparity
computation algorithms. However, the value of τ can be tuned
following this same process. This parameter choice is how our
approach takes into account some statistical information about
the environment and the performance of the cost function used
for matching. Also notice that capturing the correct disparity
values by multiple disparity values requires that the cost
function reflects the correct matching cost between stereo pair.
That is, it is likely to find the true matched point near a local
minimum. There are no guarantees for the case of reflections
since this artifacts yield cost function with misleading local
minima.

VI. AGGREGATE OCCUPANCY MAP COMPUTATION

The aggregate occupancy map is computed using a variation
of the visibility based approach introduced in [23], in which a
probability of occupancy is obtained for points in the so-called
u-disparity space (or simply ud space). The main difference
for our approach is that we consider multiple candidate points
per each pixel due to our multi-valued disparity map instead
of a single point estimate.

In the original approach, a point s = (u, d) in the u-disparity
space is assigned a probability of occupancy by counting the
number of visible and observed obstacle points falling within



the site. Since our disparity map is multi-valued, a single pixel
p in the image domain may have multiple points in the point
cloud. In order to compensate for this, we assign a weight to
each candidate point equal to the 1/np, where np is the number
of candidate points for that pixel. As our definition of local
minimum in section V, all the points within the flat region
of a cost function are considered as local minimum as well.
However, the contribution of this pixel to the occupancy grid
computation is normalized by the number of candidates for
this pixel. The end result is that pixels with large flat regions
will not influence the occupancy grid. Please refer to [23], [18]
for more details on occupancy computation.

The second row of Fig. 6, 7, 8, 9 and 10 illustrate the
aggregate occupancy map computed from multi-valued dis-
parity map (left) and OpenCV-SGBM disparity map (right).
Compare the occupancy map from the two different ap-
proaches, aggregate occupancy map is able to capture the
structure of obstacles as good as OpenCV-SGBM disparity
map for the regions where OpenCV-SGBM disparity map
does well, and for the regions where OpenCV-SGBM provides
wrong estimation which highlighted by the black rectangle,
the aggregate occupancy map is able to avoid it through the
normalization process during occupancy computation. Because
pixels with good disparity estimation have small number of
candidates since the global minimum cost of those pixels is
much smaller than other local minimum, and most of the
bad disparity estimations are the outcome of several local
minimum closed to the global minimum.

VII. OBSTACLE DETECTION

A simple approach for obstacle detection from the aggregate
occupancy map is to apply a threshold τp to the probability of
occupancy [23]. Detections in the image domain are obtained
by displaying a vertical segment for each location (u, d) in
which there was a detection in the occupancy map. The vertical
segments are drawn between the lower and upper planes
defined during the ground fitting procedure. We make use
of a value of τp = 0.02 for detections using our aggregate
occupancy map, and a threshold of τp = 0.15 for detections
using the traditional occupancy map using SGBM. Simple
threshold has the disadvantage of being very sensitive to the
choice of the parameter value. Hence, as future work, we
hope to make use of the approach introduced in [18] which
uses topological persistence to make obstacle detection more
robust.

VIII. RESULT

The disparity map and correspondence matching cost com-
putation is implemented in C++ using OpenCV, and all the
other processes are implemented in MATLAB. We use stereo
pairs from the KITTI dataset [6], [7], [8] to test our approach.
We tested our approach on a complete dataset from the KITTI
benchmark suite, and observed either comparable or improved
results on the occupancy map between our approach and
OpenCV-SGBM. In this section, we only highlight the most
extreme cases. Figs. 6, 7, 8, 9 and 10 show five examples of the

obstacle detection using the proposed multi-valued disparity
map and the OpenCV-SGBM disparity map. Fig. 6 illustrates
a case in which both approaches give good results. We noticed
that since most images in the datasets are of good quality
and feature well textured obstacles on the road, then disparity
computation results are often correct. Our approach produces
very similar results in these cases as well. Figs. 7, 8, 9 and
10 show four examples in which the multi-valued disparity
map provides better obstacle detection than OpenCV-SGBM.
Obstacle detections shown in the image domain are obtained
by finding the obstacle with highest disparity value for each
column in the u-disparity domain. That is, the closest obstacle
among all detected obstacles at each u. We map these detection
back to the image domain based on the height of the ground
and sky plane at position (u, d) obtained during the ground
fitting process mentioned in Section IV.

In Fig. 6, both approaches detect the obstacle correctly. We
can see little difference between the two occupancy maps. This
is due to the fact that, as discussed in Section VI, pixels with
good disparity estimation have small number of candidates.

For Fig. 7, 8 and 9, it is observed that the OpenCV-SGBM
disparity maps are bad in some regions due to the brightness
or shadow on the ground. Because of it, the occupancy maps
obtained using these disparity maps are noisy in the corre-
sponding regions in u-disparity domain, which are highlighted
by the black rectangle. This leads to the wrong obstacle
detection results on the ground. For Fig. 10, the bad disparity
is due to the repetitive pattern of the fence. The occupancy
map in (d) shows some wrong detection in the fence area
highlighted by the black rectangle and the obstacle detection
(h) shows most parts of the fence are detected as farther
obstacle. The occupancy map obtained by our approach in (c)
shows several detections including the correction detection in
the fence of region and in (g), it shows our approach obtains
much better result than (h). Our method is able to mitigate
these problem. This can be explained by noting that regions
with wrong disparity values often have multiple candidates,
and their contribution to the occupancy map is distributed over
all candidate matches.

IX. CONCLUSION

In this paper, we propose a methodology for obstacle
detection in outdoor scenes using multi-valued stereo disparity
maps. The multi-valued stereo disparity map is obtained by
selecting the local minimum of the matching cost function
using statistics from a training set of stereo pairs. An aggregate
occupancy map is computed from this multi-valued disparity
map. Finally, obstacles are detected by thresholding the aggre-
gated occupancy map. The experiment shows that the proposed
approach is able to provide more reliable occupancy maps
for obstacle detection than traditional single-valued stereo
disparity computations.

In the future, we plan to integrate this approach with topo-
logical persistent segmentation [18] and other representation
such as Stixels [10] to make obstacle detection more robust.



Fig. 6. (a) Left image of the stereo pair. (b) Disparity map from OpenCV-SGBM. (c) Aggregate occupancy map from multi-valued disparity map. (d)
Occupancy map from OpenCV-SGBM disparity map. (e) Obstacle detection using aggregate occupancy map in u-disparity domain. (f) Obstacle detection
using OpenCV-SGBM occupancy map in u-disparity domain. (g) Obstacle detection using aggregate occupancy map in image domain. (h) Obstacle detection
using OpenCV-SGBM occupancy map in image domain. In this case, both approaches give good results. (c) and (d) show similar occupancy grid maps, since
pixels with good disparity estimation have small number of candidates.

Fig. 7. (a)-(h) are the same as Fig. 6. In this case, the disparity map in (b) is wrong in some regions of ground due to the brightness. The occupancy map
computed using this disparity map is noisy in the corresponding regions highlighted by the black rectangle shown in (d). This leads to the wrong obstacle
detection on the ground shown in (h). (g) shows our approach is able to avoid those false negatives.
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