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Abstract—In this paper, we present a motion segmentation based robust
multi-target tracking technique for on-road obstacles. Our approach
uses depth imaging information, and integrates persistence topology for
segmentation and min-max network flow for tracking. To reduce time
as well as computational complexity, the max flow problem is solved
using a dynamic programming algorithm. We classify the sensor reading
into regions of stationary and moving parts by aligning occupancy maps
obtained from the disparity images and then, incorporate Kalman filter
in the network flow algorithm to track the moving objects robustly.
Our algorithm has been tested on several real-life stereo datasets and
the results show that there is an improvement by a factor of three
on robustness when comparing performance with and without the
topological persistent detections. We also perform measurement accuracy
of our algorithm using popular evaluation metrics for segmentation and
tracking, and the results look promising.

Index Terms—image motion analysis, image sequence analysis, object
detection, image segmentation, autonomous agents

I. INTRODUCTION

In the past few decades, many researchers have explored the
area of intelligent vehicles and tried to make vehicles perceive
and analyze their surrounding environment in order to enhance
on-road safety. However until now, reliable detection and tracking
of on-road obstacles remains one of the most complex tasks for
driver assistance and autonomous navigation systems. This issue is
challenging due to variable illumination conditions, changing weather
conditions, and highly dynamic background. In this paper, we focus
on the identification of moving and stationary obstacles on the road,
and the robust tracking of mobile agents using visual sensors by
applying a segmentation method based on topological persistence.
We describe how image sequences taken by a stereo camera can
be processed to detect and track multiple moving objects against a
moving background.

Traditionally, the problem of multi-object tracking in dynamic en-
vironments has been performed either by detecting and classifying the
targets in one frame, and tracking those detections in the consecutive
frames [1], [2]; or by background subtraction methods i.e. tracking by
segmenting the moving objects from the static background [3], [4].
We proceed by segmenting the obstacles present in field of view of the
ego vehicle, then classify the obstacles as static and dynamic, and then
track only the moving obstacles over time. Previously, the classical
approaches have addressed the problem of obstacle segmentation by
simply thresholding some likelihood function. These methods are
heavily reliant on the choice of threshold values and small changes in
these thresholds lead to huge variations in the segmentation results.
In our work, we propose a novel approach to dynamic multi-target
tracking from a mobile platform utilizing our previous work on robust
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obstacle segmentation based on persistent topology [5]. Owing to its
hierarchical nature, the persistence based method does not rely on
a single threshold value; instead, it keeps track of all the detection
results, corresponding to different thresholds.

Fig. 1 provides an overview of our methodology. This work builds
on our recent results on robust obstacle segmentation based on
topological persistence [5]. We start with a UV-disparity approach
[6] to separate the ground from the obstacles. A visibility based
occupancy map [7] is then computed to segment the obstacles in
the occupancy domain. We perform occupancy grid mapping over
consecutive frames [8] to compensate the motion of the ego vehicle
and label only the obstacles which are in motion. To make our seg-
mentation results further robust, a topological persistence technique
is employed. For the tracking module, our method extends the works
of Zhang et al. [9] and Pirsiavash et al. [10], and incorporates a
dynamic programming approach followed by Kalman filtering [11].
Tracking of the moving obstacles is performed by data association
between consecutive frames using network flows. Combining the
dynamic programming with Kalman filtering for position and velocity
estimation reduces the dependence on color histogram to find correct
matches in consecutive frames yielding better results in scenarios of
variable illumination conditions.

The remainder of this paper is organized as follows. An overview
of our robust motion segmentation approach is presented in sec.
II. A description of our proposed obstacle tracking methodology is
introduced in sec. III. The metrics used for performance evaluation
are explained in sec. IV. Results are discussed in sec. V. Finally, sec.
VI summarizes our findings and discusses future scope.

II. ROBUST MOTION SEGMENTATION

Obstacles are robustly segmented from an occupancy map via
topological persistence. The occupancy grid map is obtained from
a stereo pair of images using a disparity computation approach [5],
[7]. Fig. 2 illustrates the methodology. A fast and easy way of
segmentation is simply thresholding the occupancy map. However,
the ideal threshold value may change between images even in the

Fig. 1: Flowchart of the proposed methodology



Fig. 3: (a) Average number of regions changed for thresholding approach. (b) Average number of regions changed for persistence approach.
(c) Segmentation of thresholding approach for threshold from 0.4 to 0.55. (d) Segmentation of persistence approach for threshold parameter
from 0.2 to 0.35.

same sequence due to variations in the occupancy map attributed to
the quality of the disparity map. Furthermore, there may not exist a
single threshold that provides all the obstacles corresponding to the
peaks of the occupancy map without merging or dividing obstacle
regions which are not supposed to. In order to address all of these
issues, a topological persistence based approach, introduced in [5],
is implemented to generate a more robust segmentation. The main
advantage of the persistence diagram is its stability property [12],
which translates into the following: we can obtain a segmentation
result that is robust to parameter value changes and small variations

Fig. 2: Robust segmentation processing. (a) Disparity map. (b) Road
segmentation in v-disparity map. (c) Occupancy grid map in u-
disparity map. (d) Persistence diagram. (e) Robust segmentation
result.

in the disparity map.
Fig. 3 illustrates the robustness of the segmentation result, the

sensitivity is measured by the number of added and removed re-
gions as the parameter changes by 0.05 for the simple thresholding
and persistence approaches. Fig. 3 (a) and (b) show how visible
regions change, averaged from 100 frames using both approaches.
On average, the persistence method gives fewer number of regions.
In order to quantify this statement, we select parameter values ⌧ from
0.4 to 0.55 for the thresholding method and persistence parameter
� from 0.2 to 0.35 for the persistence method. These ranges are
picked because in average both methods obtain acceptable results.
In this range, the persistence method has 0.82 region changes on an
average and the thresholding method has 1.14. That is a reduction of
28% when using the persistence approach. Fig. 3 (c) and (d) show
one example of the segmentation results using both methods over
the compared parameter ranges. The thresholding method has a lot
of changes, especially for the two cars on the left. On the contrary,
the persistence segmentation results are very consistent.

After extracting the persistent regions from the image frames, we
work towards motion compensation of the ego vehicle. We extend
the occupancy grid mapping scheme to a dynamic occupancy grid
mapping framework, which is able to label the stationary and moving
objects in the local map [8], [13]. We create a static probability map
by accumulating the individual occupancy grids of consecutive image
frames. First, we compute the rotational and translational motion
between the successive image frames using Scale-invariant feature
matching technique (SIFT) and then, using that homography infor-
mation, an accumulated probability map is constructed by employing
a Bayesian filter approach. The probabilities of the visible regions
in the ud-domain of the static and the original occupancy map of
each frame can then be compared to distinguish between the moving
and stationary objects. The regions with higher probability in the



Fig. 4: Results of occupancy grid alignment (a)-(c) Occupancy Grids
of 3 successive frames (d) Accumulated Occupancy Grid (e) Motion
Segmentation Result.

accumulated occupancy map represent the static objects present in
the scene, whereas the regions with low probability are the objects
in motion. Fig. 4 displays the results of our segmentation method.
Fig. 4 (d) illustrates the accumulated occupancy grid showing high
probabilities only for static obstacles.

III. TRACKING METHODOLOGY

Data association is done using network flows and then the max-
imum flow problem is solved using push relabeling [9] and global
greedy [10] algorithms. We first construct a Hidden Markov Model
based flow network using prior works of Zhang et al [9]. In each
frame, the objects segmented as moving are represented as vertices
of the flow network. Edges between every pair of vertices represent
the cost for considering two objects belonging to the same trajectory.
To calculate the shortest, i.e. the minimum cost path in a network, we
modify the works of Pirsiavash et el. [10], in which a Discriminatively
Trained Part-Based Model (DPM) object detector [14] is used to
detect objects in each frame and each object is assigned a unique
score. In our work, we have detected the objects in each frame from
our persistence based segmentation method and modified the scores
associated with the objects using their birth and death times from
the persistence diagram. Once the whole network is constructed,
instead of using a push-relabeling method [9], we use an iterative
dynamic programming method [10] combined with a Kalman filter.
This helps us to get an improved multi-target tracking algorithm
by incorporating location information in the transition costs. Use of
Kalman filter also reduces dependency on the color histogram of the
images, which improves the performance in scenarios with variable
lighting conditions.

IV. EVALUATION METRICS

To quantitatively measure the performance of our motion seg-
mentation and multi-target tracking algorithm, we have used sev-
eral popular evaluation metrics from the literature [15]–[17]. The
following metrics are used to quantify the performance of our motion
segmentation approach:

• Precision = correct matches / total groundtruth objects
• Recall = correct matches / output objects.
• FA/Frm = No. of false alarms per frame.

For tracking performance we use:
• GT = No. of groundtruth trajectories.
• Mostly tracked (MT%) = Percentage of GT trajectories cov-

ered by tracker output for more than 80% in length.
• Mostly lost (ML%) = Percentage of GT trajectories covered by

tracker output for less than 20% in length.
• Fragments (Fr) = The total of No. of times that a groundtruth

trajectory is interrupted in tracking result.
• ID switches (IDS) = The total of No. of times that a tracked

trajectory changes its matched GT identity.
• Multiple Object Tracking Accuracy (MOTA) measures the

discrete number of errors that occur during tracking.

MOTA = 1� ⌃t(FP (t) + FN(t) + ID(t))
⌃tNGT (t)

(1)

where, FP (t), FN(t) and ID(t) denote the number of false
positives, missed targets and identity switches at time t, re-
spectively. NGT (t) denotes the total number of annotated
groundtruth targets at time t.

• Multiple Object Tracking Precision (MOTP) assesses the
trackers precision, i.e. its ability to localize the target in the
image.

MOTP =

P
t,i d̄(GT t

i H
t
g(i))P

t mt
(2)

where GT t
i and Ht

g(i) are the target and its associated hypoth-
esis, respectively, and mt is the number of matches at time t.
Intuitively, it provides the average distance over all matched
pairs.

V. EXPERIMENTS

All the experiments and simulations are implemented in MATLAB
on a 2.4 GHz dual-core laptop with 16 GB RAM. We tested and
analyzed our proposed method qualitatively and quantitatively using
several stereo image sequences representing real road environments
from KITTI Vision Benchmark Suite [18]–[20]. In this paper, we
have mainly focused on two different datasets, A and B, consisting
of 200 and 120 frames representing inner city and residential traffic
respectively. Each image is of size 1242 ⇥ 375. Persistence based
segmentation takes about 13.76 seconds per image, and tracking takes
about 25.57 seconds for dataset A and 16.23 seconds for dataset B.
The persistence parameter for both the datasets is � = 0.15. The
groundtruth for our experiments is generated by manual annotations.
Our method is heavily reliant on depth imaging information. In this
paper, we do not focus on generating our own disparity maps and use
the ones available in KITTI website. Sometimes, the results suffer due
to bad disparity results. We, thus, generate the groundtruth assuming
we have good disparity result and see that our motion segmentation
and tracker output gives good robust results for disparity values within
7 and 40. The source code of our implementation and datasets used
for validation (including manual annotations) will be made available
upon acceptance of the paper for publication.



Fig. 5: Comparison result between persistence and threshold methods
on dataset A. (Top) Trajectory length distribution for Persistence
based tracking method. (Bottom) Trajectory length distribution for
Threshold based tracking method.

In this experiment, we use image sequences from datasets, A and
B, and apply both traditional threshold method and persistence based
segmentation method on those image sequences. The threshold value
for the traditional segmentation method is ⌧ = 0.5, which gives a
relatively constant segmentation result.

Fig. 5 shows the statistical analysis of the same tracking method
for different inputs. The total number of trajectories obtained from
the threshold method is 10, which is higher than the number of
trajectories computed through persistence method, which equals the
number of groundtruth trajectories i.e. 7. But if we focus on the
bottom plot in Fig. 5, we can clearly see that the number of
trajectories with smaller lengths are much more than the number of
trajectories of longer lengths. The segmentation based on thresholding
is not robust to the change of scene and location of the object. As a
consequence, we can not always get consistent segmentation results
for the same object in different frames. If the segmentation results
vary hugely between frames, the transition cost between correct
tracking pairs increases and leads to gaps in the trajectories, which

Fig. 6: Tracking Results over 10 consecutive frames from Dataset A

Dataset Precision Recall FA/Frm

A 0.95 0.97 0.25
B 0.91 0.96 0.42

TABLE I: Analysis of our Motion Segmentation Method

Dataset GT MT% ML% Fr IDS MOTA MOTP

A 7 0.80 0 0 0 1 0.83
B 7 0.86 0 0 3 0.88 0.81

TABLE II: Quantitative Analysis of our Tracking Method

results in a large number of trajectories having short lengths. On the
other hand, our persistence based method gives a high measurement
accuracy and higher average trajectory length. This demonstrates the
effectiveness of our approach in tracking moving objects over longer
periods of time. Fig. 6 shows a consistent tracking result of our
algorithm over 10 consecutive frames of dataset A.

To demonstrate the effectiveness of our proposed method, sample
evaluation runs are made on several datasets from KITTI and the
results are shown in Table I and Table II.

Our evaluation on Datasets A and B depicts that the proposed
algorithm works pretty accurately and precisely. The rates of false
positives, true positives and false negatives for set A are 0, 1
and 0 respectively and 0.1, 0.87 and 0.03 respectively using the
CLEARMOT metrics. We only consider a match to be correct if
the overlap is more than 50%.

VI. CONCLUSION

In this paper, we propose a robust tracking technique based on
motion segmentation [5]. We extend the prior works of Zhang et
al. [9] and Pirsiavash et al. [10] by incorporating a Kalman filter,
and apply tools from persistent topology to refine their approaches.
The quantitative analysis of our method shows that the tracking
performance is more robust when we use persistent topology for
segmentation instead of the traditional thresholding method. Our
analysis also depicts that incorporating a Kalman filter to estimate
the position and velocity of the target objects in consecutive frames
further improves our results.

In the future, we plan to continue our work to further improve
the robustness of our proposed approach to handle errors in disparity
computations as well as extending our methodology to incorporate
classification of obstacles.
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