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Image Segmentation
• Image segmentation clusters the image pixels into a set of groups 

visually distinct and uniform with respect to some properties. 

• Region of interest depends on applications.
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Image Segmentation
• Applications

Image Segmentation

Medical Imaging

Autonomous DrivingVideo Surveillance

Object TrackingObject Recognition
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Image Segmentation
• Grouped by methodology:

Superpixel-based
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Clustering-based

[DC02]

Edge-based

http://www.roborealm.com/help/Canny.php  

Region Growing
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Graph-based

[AK13]

[RA12]



Why Robust?
• Robust to noise, parameter selection, image quality and resolution

‣ Medical images are often polluted noisy. 

‣ User inputs cannot be the same every time. 

‣ Outdoor scene images quality varies over time.
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Framework of Robust Segmentation

Input Data Probability Map Persistence!
Analysis

Robust!
Segmentation
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Framework of Robust Segmentation
• Consensus-based image segmentation

Method: SAS Method: Normalized Cuts 

Method: Graph-based segmentation Method: Mean Shift 
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Framework of Robust Segmentation
• Obstacle segmentation of outdoor scene 
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Contribution
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‣ Present an innovative framework for image segmentation 
based on topological persistence which is robust to 
image conditions and parameter selection.  

‣ Applied to consensus-based image segmentation which 
is able to get better segmentation results.  

‣ Applied to obstacle detection in outdoor scene for 
autonomous driving which is robust to parameter 
selection. 



Persistent Homology
• For image segmentation, we borrow the concept of persistent 

homology to extract persistence regions and avoid noise.
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Persistent Homology
• Topological persistence
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Persistent Homology
• Topological persistence

20



Consensus-based Image Segmentation 

Method: SAS 

Method: Normalized Cuts 

Method: Graph-based segmentation 

Method: Mean Shift 
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Result'Result
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Consensus-based Image Segmentation 
• Image segmentation model
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Consensus-based Image Segmentation 
• Image segmentation model
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Input

Segmentation !
Result



Consensus-based Image Segmentation 
• Probability map construction

Probability of edge!
at this pixel

Overlay

A small patch around pixel X

D*(X) = !
# edge / # segmentations

24



Consensus-based Image Segmentation 
• Probability map construction

Connection probability map Edge probability map
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Consensus-based Image Segmentation 
• Effect of patch size n
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Consensus-based Image Segmentation 
• Effect of patch size n

n=3 n=5

n=7 n=9 27



n=3 n=5

n=9n=7

Consensus-based Image Segmentation 
• Persistence diagram
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Consensus-based Image Segmentation 
• Thresholding persistence diagram

‣ Persistence threshold - extract persistent region and remove noise.!

‣ Probability threshold - make sure capture edges being present in high probability.
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Consensus-based Image Segmentation 
• Segmentation obtained by color-based region growing
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Consensus-based Image Segmentation 
• Experiment - Input set generation
‣ Dataset - Berkeley Segmentation Database!
‣ Four input algorithms: SAS, Normalized Cuts, Graph-based and Mean 

Shift

- SAS: number of region varying from 5 to 30!

- Normalized Cuts: number of region varying from 5 to 30!

- Graph-based: 𝛔 varying from 0.4 to 0.8, k varying from 500 to 5000!

‣ Mean Shift: k1 varying from 2 to 15, k2 varying from 7 to 15

‣ 238 input segmentations in total!
‣ Probability are weighted by number of input from each algorithm
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Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.900 Score:0.5800

Score:0.8800 Score:0.9200



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.8921



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.7904 Score:0.2642

Score:0.6377 Score:0.9009



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.8408



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.6613 Score:0.3589

Score:0.7436 Score:0.7467



Consensus-based Image Segmentation 
• Experiment - Result

37

Score:0.6593



Consensus-based Image Segmentation 
• Experiment - Result
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‣ RSC - Coverage score 

‣ VoI - Variation of information



Obstacle Segmentation of Outdoor Scene
• Vision system for autonomous driving
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Obstacle Segmentation of Outdoor Scene
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Obstacle Segmentation of Outdoor Scene
• Disparity map

U coordinate
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Obstacle Segmentation of Outdoor Scene
• Ground Segmentation
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Obstacle Segmentation of Outdoor Scene
• Occupancy computation

M. Perrollaz, J.-D. Yoder, A. Ne`gre, A. Spalanzani, and C. Laugier, “A visibility-based approach for occupancy grid computation in disparity space,” Intelligent Transportation 
Systems, IEEE Transactions on, vol. 13, no. 3, pp. 1383–1393, 2012 43



Obstacle Segmentation of Outdoor Scene
• Occupancy computation
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Obstacle Segmentation of Outdoor Scene
• Persistence region extraction
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Obstacle Segmentation of Outdoor Scene
• Experiment
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‣ Dataset - KITTI Vision Benchmark Suite!
‣ Persistence threshold = 0.45



Obstacle Segmentation of Outdoor Scene
• Experiment
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‣ Dataset - KITTI Vision Benchmark Suite!
‣ Persistence threshold = 0.45



Obstacle Segmentation of Outdoor Scene
• Experiment - Compare with simple thresholding
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‣ Changing thresholding parameters

𝝉 = 0.25

𝝉 = 0.30

𝝉 = 0.35

𝝉 = 0.40

𝝉 = 0.45

𝞬 = 0.35

𝞬 = 0.40

𝞬 = 0.45

𝞬 = 0.50

𝞬 = 0.55



Obstacle Segmentation of Outdoor Scene
• Experiment - Compare with simple thresholding
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‣ Changing images with the same threshold
Frame 1

Frame 2

Frame 3

Frame 4

Frame 1

Frame 2

Frame 3

Frame 4

𝝉 = 0.35

𝝉 = 0.35

𝝉 = 0.35

𝝉 = 0.35

𝞬 = 0.45

𝞬 = 0.45

𝞬 = 0.45

𝞬 = 0.45



Conclusion 
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Frame 1

Frame 2

Frame 3

Frame 4

‣ Present an innovative framework for image segmentation 
based on topological persistence which is robust to 
image conditions and parameter selection.  

‣ Applied to consensus-based image segmentation which 
is able to get better segmentation results.  

‣ Applied to obstacle detection in outdoor scene for 
autonomous driving which is robust to parameter 
selection. 



Future work
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Frame 1

Frame 2

Frame 3

Frame 4

‣ Find a better parameter selection strategy for 
consensus-based image segmentation.  

• Extension 

‣ Refine the obstacle segmentation using Markov 
Random Field.



Thanks!
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Obstacle Segmentation of Outdoor Scene
• Disparity map

U coordinate
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Persistent Homology
• Homology is motivated by the observation that two shapes can be 

distinguished by their holes

• One connected component
• One hole

B
• One connected component
• Two holes
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Persistent Homology
• Sample topological space by point cloud

D
B
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Dim0 - Connected Component
Dim1 - Hole

Describe

Simplex
Finite Collection

0-simplex 1-simplex 2-simplex

Simplicial Complex

Persistent Homology
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Vietoris-Rips complex



𝝐1 𝝐2 𝝐3 𝝐4
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Persistent Homology
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Persistence Diagram
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Persistent Homology
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B
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Persistent Homology



Consensus-based Image Segmentation 
• Experiment - Result
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Obstacle Segmentation of Outdoor Scene
• Occupancy computation

M. Perrollaz, J.-D. Yoder, A. Ne`gre, A. Spalanzani, and C. Laugier, “A visibility-based approach for occupancy grid computation in disparity space,” Intelligent Transportation 
Systems, IEEE Transactions on, vol. 13, no. 3, pp. 1383–1393, 2012 61
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Obstacle Segmentation of Outdoor Scene
• Occupancy computation

M. Perrollaz, J.-D. Yoder, A. Ne`gre, A. Spalanzani, and C. Laugier, “A visibility-based approach for occupancy grid computation in disparity space,” Intelligent Transportation 
Systems, IEEE Transactions on, vol. 13, no. 3, pp. 1383–1393, 2012 62



Obstacle Segmentation of Outdoor Scene
• Persistence region extraction
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Obstacle Segmentation of Outdoor Scene
• Experiment - Effect of parameter
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Frame 1

Frame 2

Frame 3

Frame 4

Frame 1
𝞬 = 0.30
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Consensus-based Image Segmentation 
• Effect of patch size n
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Consensus-based Image Segmentation 
• Experiment - Result
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Obstacle Segmentation of Outdoor Scene
• Stereo vision setup
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