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Image Segmentation
• Image segmentation clusters the image pixels into a set of groups 

visually distinct and uniform with respect to some properties. 

• Region of interest depends on applications.
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Image Segmentation
• Applications

Image Segmentation

Medical Imaging

Autonomous DrivingVideo Surveillance

Object TrackingObject Recognition
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Image Segmentation
• Grouped by methodology:

Superpixel-based
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Clustering-based

[DC02]

Edge-based

http://www.roborealm.com/help/Canny.php  

Region Growing

[JL10]
Graph-based

[AK13]

[RA12]



Why Robust?
• Robust to noise, parameter selection, image quality and resolution

‣ Medical images are often polluted noisy. 

‣ User inputs cannot be the same every time. 

‣ Outdoor scene images quality varies over time.
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Framework of Robust Segmentation

Input Data Probability Map Persistence"
Analysis

Robust"
Segmentation
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Framework of Robust Segmentation
• Obstacle segmentation of outdoor scene 
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Framework of Robust Segmentation
• Consensus-based image segmentation

Method: SAS Method: Normalized Cuts 

Method: Graph-based segmentation Method: Mean Shift 
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Contribution
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‣ Present an innovative framework for image segmentation 
based on topological persistence which is robust to 
image conditions and parameter selection. 

‣ Applied to obstacle detection in outdoor scene for 
autonomous driving which is robust to parameter 
selection.  

‣ Applied to consensus-based image segmentation which 
is able to get better segmentation results. 



Persistent Homology
• For image segmentation, we borrow the concept of persistent 

homology to extract persistence regions and avoid noise.
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Persistent Homology
• Topological persistence
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Persistent Homology
• Topological persistence
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Obstacle Segmentation of Outdoor Scene
• Vision system for autonomous driving
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Obstacle Segmentation of Outdoor Scene

22



Obstacle Segmentation of Outdoor Scene
• Disparity map

U coordinate
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Obstacle Segmentation of Outdoor Scene
• Ground Segmentation
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Obstacle Segmentation of Outdoor Scene
• Occupancy computation

M. Perrollaz, J.-D. Yoder, A. Ne`gre, A. Spalanzani, and C. Laugier, “A visibility-based approach for occupancy grid computation in disparity space,” Intelligent Transportation 
Systems, IEEE Transactions on, vol. 13, no. 3, pp. 1383–1393, 2012 25



Obstacle Segmentation of Outdoor Scene
• Occupancy computation
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Obstacle Segmentation of Outdoor Scene
• Persistence region extraction
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Obstacle Segmentation of Outdoor Scene
• Experiment
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‣ Dataset - KITTI Vision Benchmark Suite"
‣ Persistence threshold = 0.45



Obstacle Segmentation of Outdoor Scene
• Experiment
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‣ Dataset - KITTI Vision Benchmark Suite"
‣ Persistence threshold = 0.45



Obstacle Segmentation of Outdoor Scene
• Experiment - Compare with simple thresholding
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‣ Changing thresholding parameters

𝝉 = 0.25

𝝉 = 0.30

𝝉 = 0.35

𝝉 = 0.40

𝝉 = 0.45

𝞬 = 0.35

𝞬 = 0.40

𝞬 = 0.45

𝞬 = 0.50

𝞬 = 0.55



Obstacle Segmentation of Outdoor Scene
• Experiment - Compare with simple thresholding
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‣ Changing images with the same threshold
Frame 1

Frame 2

Frame 3

Frame 4

Frame 1

Frame 2

Frame 3

Frame 4

𝝉 = 0.35

𝝉 = 0.35

𝝉 = 0.35

𝝉 = 0.35

𝞬 = 0.45

𝞬 = 0.45

𝞬 = 0.45

𝞬 = 0.45



Consensus-based Image Segmentation 

Method: SAS 

Method: Normalized Cuts 

Method: Graph-based segmentation 

Method: Mean Shift 
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Consensus-based Image Segmentation 
• Image segmentation model
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Consensus-based Image Segmentation 
• Image segmentation model
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Input

Segmentation "
Result



Consensus-based Image Segmentation 
• Probability map construction

Probability of edge"
at this pixel

Overlay

A small patch around pixel X

D*(X) = "
# edge / # segmentations
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Consensus-based Image Segmentation 
• Probability map construction

Connection probability map Edge probability map
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Consensus-based Image Segmentation 
• Effect of patch size n
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Consensus-based Image Segmentation 
• Effect of patch size n

n=3 n=5

n=7 n=9 38



n=3 n=5

n=9n=7

Consensus-based Image Segmentation 
• Persistence diagram
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Consensus-based Image Segmentation 
• Thresholding persistence diagram

‣ Persistence threshold - extract persistent region and remove noise."

‣ Probability threshold - make sure capture edges being present in high probability.
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Consensus-based Image Segmentation 
• Segmentation obtained by color-based region growing
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Consensus-based Image Segmentation 
• Experiment - Input set generation
‣ Dataset - Berkeley Segmentation Database"
‣ Four input algorithms: SAS, Normalized Cuts, Graph-based and Mean 

Shift

- SAS: number of region varying from 5 to 30"

- Normalized Cuts: number of region varying from 5 to 30"

- Graph-based: 𝛔 varying from 0.4 to 0.8, k varying from 500 to 5000"

‣ Mean Shift: k1 varying from 2 to 15, k2 varying from 7 to 15

‣ 238 input segmentations in total"
‣ Probability are weighted by number of input from each algorithm
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Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.900 Score:0.5800

Score:0.8800 Score:0.9200



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.8921



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.7904 Score:0.2642

Score:0.6377 Score:0.9009



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.8408



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.6613 Score:0.3589

Score:0.7436 Score:0.7467



Consensus-based Image Segmentation 
• Experiment - Result
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Score:0.6593



Consensus-based Image Segmentation 
• Experiment - Result
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‣ RSC - Coverage score 

‣ VoI - Variation of information



Conclusion 
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Frame 1

Frame 2

Frame 3

Frame 4

‣ Present an innovative framework for image segmentation 
based on topological persistence which is robust to 
image conditions and parameter selection.  

‣ Applied to consensus-based image segmentation which 
is able to get better segmentation results.  

‣ Applied to obstacle detection in outdoor scene for 
autonomous driving which is robust to parameter 
selection. 



Future work
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Frame 1

Frame 2

Frame 3

Frame 4

‣ More experiments to demonstrate the robustness of the 
segmentation using topological persistence.  

‣ Extend the mathematical formulation of this work in order 
to provide guarantees of performance. 

‣ Collect image data of different species of foraminifera 
(forams) and apply topological persistence theory on the 
dataset to segment the structure of each forams as well as 
identify forams species.

• Work has to be done before graduation



Future work
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Frame 1

Frame 2

Frame 3

Frame 4

‣ Find a better parameter selection strategy for 
consensus-based image segmentation.  

• Extension 

‣ Refine the obstacle segmentation using Markov 
Random Field.
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